Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 17: 196, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26951612

RESUMEN

BACKGROUND: A region on Sus scrofa chromosome 4 (SSC4) surrounding single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) has been reported to be strongly associated with both weight gain and serum viremia in pigs after infection with PRRS virus (PRRSV). A proposed causal mutation in the guanylate binding protein 5 gene (GBP5) is predicted to truncate the encoded protein. To investigate transcriptional differences between WUR genotypes in early host response to PRRSV infection, an RNA-seq experiment was performed on globin depleted whole blood RNA collected on 0, 4, 7, 10 and 14 days post-infection (dpi) from eight littermate pairs with one AB (favorable) and one AA (unfavorable) WUR genotype animal per litter. RESULTS: Gene Ontology (GO) enrichment analysis of transcripts that were differentially expressed (DE) between dpi across both genotypes revealed an inflammatory response for all dpi when compared to day 0. However, at the early time points of 4 and 7dpi, several GO terms had higher enrichment scores compared to later dpi, including inflammatory response (p < 10(-7)), specifically regulation of NFkappaB (p < 0.01), cytokine, and chemokine activity (p < 0.01). At 10 and 14dpi, GO term enrichment indicated a switch to DNA damage response, cell cycle checkpoints, and DNA replication. Few transcripts were DE between WUR genotypes on individual dpi or averaged over all dpi, and little enrichment of any GO term was found. However, there were differences in expression patterns over time between AA and AB animals, which was confirmed by genotype-specific expression patterns of several modules that were identified in weighted gene co-expression network analyses (WGCNA). Minor differences between AA and AB animals were observed in immune response and DNA damage response (p = 0.64 and p = 0.11, respectively), but a significant effect between genotypes pointed to a difference in ion transport/homeostasis and the participation of G-coupled protein receptors (p = 8e-4), which was reinforced by results from regulatory and phenotypic impact factor analyses between genotypes. CONCLUSION: We propose these pathway differences between WUR genotypes are the result of the inability of the truncated GBP5 of the AA genotyped pigs to inhibit viral entry and replication as quickly as the intact GBP5 protein of the AB genotyped pigs.


Asunto(s)
Proteínas de Unión al GTP/genética , Polimorfismo de Nucleótido Simple , Síndrome Respiratorio y de la Reproducción Porcina/genética , Sus scrofa/genética , Animales , Quimiocinas/inmunología , Biología Computacional , Citocinas/inmunología , Daño del ADN , Genotipo , Inflamasomas/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino , Análisis de Secuencia de ARN , Sus scrofa/inmunología , Sus scrofa/virología , Porcinos , Transcriptoma , Viremia/genética , Viremia/inmunología
2.
BMC Genomics ; 16: 516, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26159815

RESUMEN

BACKGROUND: The presence of variability in the response of pigs to Porcine Reproductive and Respiratory Syndrome virus (PRRSv) infection, and recent demonstration of significant genetic control of such responses, leads us to believe that selection towards more disease resistant pigs could be a valid strategy to reduce its economic impact on the swine industry. To find underlying molecular differences in PRRS susceptible versus more resistant pigs, 100 animals with extremely different growth rates and viremia levels after PRRSv infection were selected from a total of 600 infected pigs. A microarray experiment was conducted on whole blood RNA samples taken at 0, 4 and 7 days post infection (dpi) from these pigs. From these data, we examined associations of gene expression with weight gain and viral load phenotypes. The single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) on the porcine 60 K SNP chip was shown to be associated with viral load and weight gain after PRRSv infection, and so the effect of the WUR10000125 (WUR) genotype on expression in whole blood was also examined. RESULTS: Limited information was obtained through linear modeling of blood gene differential expression (DE) that contrasted pigs with extreme phenotypes, for growth or viral load or between animals with different WUR genotype. However, using network-based approaches, molecular pathway differences between extreme phenotypic classes could be identified. Several gene clusters of interest were found when Weighted Gene Co-expression Network Analysis (WGCNA) was applied to 4 dpi contrasted with 0 dpi data. The expression pattern of one such cluster of genes correlated with weight gain and WUR genotype, contained numerous immune response genes such as cytokines, chemokines, interferon type I stimulated genes, apoptotic genes and genes regulating complement activation. In addition, Partial Correlation and Information Theory (PCIT) identified differentially hubbed (DH) genes between the phenotypically divergent groups. GO enrichment revealed that the target genes of these DH genes are enriched in adaptive immune pathways. CONCLUSION: There are molecular differences in blood RNA patterns between pigs with extreme phenotypes or with a different WUR genotype in early responses to PRRSv infection, though they can be quite subtle and more difficult to discover with conventional DE expression analyses. Co-expression analyses such as WGCNA and PCIT can be used to reveal network differences between such extreme response groups.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Animales , Citocinas/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , ARN/genética , Porcinos , Análisis de Matrices Tisulares/métodos , Carga Viral/métodos , Viremia/genética , Viremia/virología
3.
BMC Genomics ; 16: 412, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26016888

RESUMEN

BACKGROUND: Previously, we identified a major quantitative trait locus (QTL) for host response to Porcine Respiratory and Reproductive Syndrome virus (PRRSV) infection in high linkage disequilibrium (LD) with SNP rs80800372 on Sus scrofa chromosome 4 (SSC4). RESULTS: Within this QTL, guanylate binding protein 5 (GBP5) was differentially expressed (DE) (p < 0.05) in blood from AA versus AB rs80800372 genotyped pigs at 7,11, and 14 days post PRRSV infection. All variants within the GBP5 transcript in LD with rs80800372 exhibited allele specific expression (ASE) in AB individuals (p < 0.0001). A transcript re-assembly revealed three alternatively spliced transcripts for GBP5. An intronic SNP in GBP5, rs340943904, introduces a splice acceptor site that inserts five nucleotides into the transcript. Individuals homozygous for the unfavorable AA genotype predominantly produced this transcript, with a shifted reading frame and early stop codon that truncates the 88 C-terminal amino acids of the protein. RNA-seq analysis confirmed this SNP was associated with differential splicing by QTL genotype (p < 0.0001) and this was validated by quantitative capillary electrophoresis (p < 0.0001). The wild-type transcript was expressed at a higher level in AB versus AA individuals, whereas the five-nucleotide insertion transcript was the dominant form in AA individuals. Splicing and ASE results are consistent with the observed dominant nature of the favorable QTL allele. The rs340943904 SNP was also 100 % concordant with rs80800372 in a validation population that possessed an alternate form of the favorable B QTL haplotype. CONCLUSIONS: GBP5 is known to play a role in inflammasome assembly during immune response. However, the role of GBP5 host genetic variation in viral immunity is novel. These findings demonstrate that rs340943904 is a strong candidate causal mutation for the SSC4 QTL that controls variation in host response to PRRSV.


Asunto(s)
Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/química , Sitios de Carácter Cuantitativo , Sus scrofa , Empalme Alternativo , Animales , Proteínas de Unión al GTP/sangre , Regulación de la Expresión Génica , Genotipo , Polimorfismo de Nucleótido Simple , Síndrome Respiratorio y de la Reproducción Porcina/sangre , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Sitios de Empalme de ARN , Porcinos
4.
J Genomics ; 5: 58-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611852

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease with a significant impact on the swine industry causing major economic losses. The objective of this study is to examine copy number variations (CNVs) associated with the group-specific host responses to PRRS virus infection. We performed a genome-wide CNV analysis using 660 animals genotyped with on the porcine SNP60 BeadChip and discovered 7097 CNVs and 271 CNV regions (CNVRs). For this study, we used two established traits related to host response to the virus, i.e. viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain (WG42 from 0 to 42 days post infection). To investigate the effects of CNVs on differential host responses to PRRS, we compared groups of animals with extreme high and low estimated breeding values (EBVs) for both traits using a case-control study design. For VL, we identified 163 CNVRs (84 Mb) from the high group and 159 CNVRs (76 Mb) from the low group. For WG42, we detected 126 (68 Mb) and 156 (79 Mb) CNVRs for high and low groups, respectively. Based on gene annotation within group-specific CNVRs, we performed network analyses and observed some potential candidate genes. Our results revealed these group-specific genes are involved in regulating innate and acquired immune response pathways. Specifically, molecules like interferons and interleukins are closely related to host responses to PRRS virus infection.

5.
Sci Rep ; 7: 46203, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393889

RESUMEN

It has been shown that inter-individual variation in host response to porcine reproductive and respiratory syndrome (PRRS) has a heritable component, yet little is known about the underlying genetic architecture of gene expression in response to PRRS virus (PRRSV) infection. Here, we integrated genome-wide genotype, gene expression, viremia level, and weight gain data to identify genetic polymorphisms that are associated with variation in inter-individual gene expression and response to PRRSV infection in pigs. RNA-seq analysis of peripheral blood samples collected just prior to experimental challenge (day 0) and at 4, 7, 11 and 14 days post infection from 44 pigs revealed 6,430 differentially expressed genes at one or more time points post infection compared to the day 0 baseline. We mapped genetic polymorphisms that were associated with inter-individual differences in expression at each day and found evidence of cis-acting expression quantitative trait loci (cis-eQTL) for 869 expressed genes (qval < 0.05). Associations between cis-eQTL markers and host response phenotypes using 383 pigs suggest that host genotype-dependent differences in expression of GBP5, GBP6, CCHCR1 and CMPK2 affect viremia levels or weight gain in response to PRRSV infection.


Asunto(s)
Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Animales , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Porcinos , Factores de Tiempo , Transcripción Genética , Viremia/genética , Viremia/virología , Aumento de Peso/genética
6.
Biores Open Access ; 1(2): 63-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23514746

RESUMEN

Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans.

7.
PLoS One ; 7(11): e48607, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23139801

RESUMEN

THE SLA (swine leukocyte antigen, MHC: SLA) genes are the most important determinants of immune, infectious disease and vaccine response in pigs; several genetic associations with immunity and swine production traits have been reported. However, most of the current knowledge on SLA is limited to gene coding regions. MicroRNAs (miRNAs) are small molecules that post-transcriptionally regulate the expression of a large number of protein-coding genes in metazoans, and are suggested to play important roles in fine-tuning immune mechanisms and disease responses. Polymorphisms in either miRNAs or their gene targets may have a significant impact on gene expression by abolishing, weakening or creating miRNA target sites, possibly leading to phenotypic variation. We explored the impact of variants in the 3'-UTR miRNA target sites of genes within the whole SLA region. The combined predictions by TargetScan, PACMIT and TargetSpy, based on different biological parameters, empowered the identification of miRNA target sites and the discovery of polymorphic miRNA target sites (poly-miRTSs). Predictions for three SLA genes characterized by a different range of sequence variation provided proof of principle for the analysis of poly-miRTSs from a total of 144 M RNA-Seq reads collected from different porcine tissues. Twenty-four novel SNPs were predicted to affect miRNA-binding sites in 19 genes of the SLA region. Seven of these genes (SLA-1, SLA-6, SLA-DQA, SLA-DQB1, SLA-DOA, SLA-DOB and TAP1) are linked to antigen processing and presentation functions, which is reminiscent of associations with disease traits reported for altered miRNA binding to MHC genes in humans. An inverse correlation in expression levels was demonstrated between miRNAs and co-expressed SLA targets by exploiting a published dataset (RNA-Seq and small RNA-Seq) of three porcine tissues. Our results support the resource value of RNA-Seq collections to identify SNPs that may lead to altered miRNA regulation patterns.


Asunto(s)
Regiones no Traducidas 3'/genética , Antígenos de Histocompatibilidad Clase II/genética , MicroARNs/genética , Modelos Genéticos , Análisis de Secuencia de ARN , Alelos , Animales , Secuencia de Bases , Sitios de Unión/genética , Secuencia Conservada/genética , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I , Humanos , MicroARNs/metabolismo , Especificidad de Órganos/genética , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA