Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Small ; : e2310542, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516964

RESUMEN

Memristors, non-volatile switching memory platform, has recently attracted significant interest, offering unique potential to enable the realization of human brain-like neuromorphic computing efficiency. Memristors also demonstrate excellent temperature tolerance, long-term durability, and high tunability with nanosecond pulses, making them highly attractive for neuromorphic computing applications. To better understand the material processing, microstructure, and property relationship of switching mechanisms in memristor devices, computational methodologies, and tools are developed to predict the I-V characteristics of memristor devices based on tantalum oxide (TaOx) resistive random-access memory (ReRAM) integrated with an n-channel metal-oxide-semiconductor (NMOS) transistor. A multiphysics model based on coupled partial differential equations for electrical and thermal transport phenomena is solved for the high- and low-resistance states during the formation, growth, and destruction of a conducting filament through SET and RESET stages. These stages effectively represent the migration of oxygen vacancies within an oxide exchange layer. A series of parametric studies and energy minimization calculations are conducted to determine probable ranges for key material and model parameters accounting for the experimental data. The computational model successfully predicted the measured I-V curves across various gate voltages applied to the NMOS transistor in the one transistor one resistance (1T1R) configuration.

2.
J Phys Chem A ; 128(28): 5627-5636, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38957945

RESUMEN

Of late, siloxane-containing vitrimers have gained significant interest due to their fast dynamic characteristics over a reasonable temperature range (180-220 °C), making them well-suited for diverse applications. The exchange reaction pathway in the siloxane vitrimers is accountable for the covalent adaptive network, with the reaction's effectiveness being regulated by either organic or organometallic catalysts. However, directly studying the exchange reaction pathway in the bulk phase using experimental approaches is challenging because of the intricate and interconnected structure of these vitrimers. Here, we perform comprehensive density functional theory (DFT) and experimental investigations to discover the detailed catalytic efficacy of siloxane exchange and provide direction for the reaction process using a 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) catalyst. The calculated transition barrier energy and catalytic efficiency of hexamethyldisiloxane and dihydroxy-dimethylsilane exchange derived from the nudged elastic band with transition-state calculations strongly agree with the experimental findings. In addition, Fukui indices, along with partial charges, are employed to evaluate the nucleophilic and electrophilic behaviors of silanol and siloxane molecules. Our analysis revealed that by utilizing the Fukui indices of both the acid and the base, we can make an approximate estimation of the respective kinetics of the SN2 process in the siloxane exchange reaction mechanism. These findings establish a foundation for comprehending a crucial aspect of the exchange mechanism in siloxane vitrimer systems and could aid in the development of novel catalysts.

3.
Small ; 18(27): e2201667, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35652507

RESUMEN

In this work, the synthesis and characterization of ultrathin metal oxide, called biotene, using liquid-phase exfoliation from naturally abundant biotite are demonstrated. The atomically thin biotene is used for energy harvesting using its flexoelectric response under multiple bending. The effective flexoelectric response increases due to the presence of surface charges, and the voltage increases up to ≈8 V, with a high mechano-sensitivity of 0.79 V N-1 for normal force. This flexoelectric response is further validated by density functional theory (DFT) simulations. The atomically thin biotene shows an increased response in the magnetic field and thermal heating. The synthesis of two-dimensional (2D) metal-oxide biotene suggests a wealth of future 2D-oxide material for energy generation and energy harvesting applications.


Asunto(s)
Glucosa Oxidasa , Óxidos , Silicatos de Aluminio , Combinación de Medicamentos , Compuestos Ferrosos , Lactoperoxidasa , Muramidasa
4.
Nanotechnology ; 34(5)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36301680

RESUMEN

Shape memory polymers (SMPs), although offer a suite of advantages such as ease of processability and lower density, lag behind their shape memory alloy counterparts, in terms of mechanical properties such as recovery stress and cyclability. Reinforcing SMPs with inorganic nanowires and carbon nanotubes (CNTs) is a sought-after pathway for tailoring their mechanical properties. Here, inorganic nanowires also offer the added advantage of covalently binding the fillers to the surrounding polymer matrices via organic molecules. The SMP composites (SMPCs) thus obtained have well-engineered nanowire-polymer interfaces, which could be used to tune their mechanical properties. A well-known method of fabricating SMPCs involving casting dispersions of nanowires (or CNTs) in mixtures of monomers and crosslinkers typically results in marginal improvements in the mechanical properties of the fabricated SMPCs. This is owed to the constraints imposed by the rule-of-mixture principles. To circumvent this limitation, a new method for SMPC fabrication is designed and presented. This involves infiltrating polymers into pre-fabricated nanowire foams. The pre-fabricated foams were fabricated by consolidating measured quantities of nanowires and a sacrificial material, such as (NH4)2CO3, followed by heating the consolidated mixtures for subliming the sacrificial material. Similar to the case of traditional composites, use of silanes to functionalize the nanowire surfaces allowed for the formation of bonds between both the nanowire-nanowire and the nanowire-polymer interfaces. SMPCs fabricated using TiO2nanowires and SMP composed of neopentyl glycol diglycidyl ether and poly(propylene glycol) bis(2-aminopropyl ether) (Jeffamine D230) in a 2:1 molar ratio exhibited a 300% improvement in the elastic modulus relative to that of the SMP. This increase was significantly higher than SMPC made using the traditional fabrication route. Well-known powder metallurgy techniques employed for the fabrication of these SMPCs make this strategy applicable for obtaining other SMPCs of any desired shape and chemical composition.

5.
Phys Chem Chem Phys ; 24(27): 16862-16875, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35789353

RESUMEN

The response of B12N12-nanocages towards DNA-nucleobases (adenine, guanine, cytosine, and thymine) is investigated using MP2 and DFT (M06-2X) levels of theory with the 6-311+G** basis set. Multiple BN-cage-nucleobase structures for each nucleobase emerged depending on the number of Lewis base centers of nucleobases. The main source of stability of these complexes is the N/O→B dative bond, where the N or O atom of nucleobases donates the lone-pair electron to one of the boron atoms of the nanocage. Nitrogen atoms of the BN-cage, adjacent to the B-site forming dative bond, act as a proton acceptor to form multiple (N-HN and N-HC) hydrogen bonds, where proton-donors NH and CH are part of nucleobases. MP2/6-311+G** adsorption energies are -43.1, -43.4 and -45.3 kcal mol-1 (B12N12-adenine), -37.1, -41.9 and -43.3 kcal mol-1 (B12N12-guanine), -41.3 and -43.4 (B12N12-cytosine), and -29.3 and -31.3 (B12N12-thymine). Similar adsorption energies were recorded for larger BN-fullerenes-nucleobases, namely B16N16 and B24N24. Changes in adsorption energies and structures of these nano-bio-hybrid materials in aqueous media are also discussed. Computationally cost-effective MP2 single point calculations at the M06-2X optimized geometries were found to be reliable in predicting adsorption energies. The effect of the BN-network and H-bonds on the adsorption process is assessed by comparing the results with simple BH3-nucleobase models. BSSE correction to the adsorption energy is not recommended.


Asunto(s)
Protones , Timina , Adenina/química , Adsorción , Citosina/química , ADN/química , Guanina/química , Enlace de Hidrógeno , Timina/química
6.
Nano Lett ; 21(5): 1935-1942, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33635654

RESUMEN

Optical imaging with nanometer resolution offers fundamental insights into light-matter interactions. Traditional optical techniques are diffraction limited with a spatial resolution >100 nm. Optical super-resolution and cathodoluminescence techniques have higher spatial resolutions, but these approaches require the sample to fluoresce, which many materials lack. Here, we introduce photoabsorption microscopy using electron analysis, which involves spectrally specific photoabsorption that is locally probed using a scanning electron microscope, whereby a photoabsorption-induced surface photovoltage modulates the secondary electron emission. We demonstrate spectrally specific photoabsorption imaging with sub-20 nm spatial resolution using silicon, germanium, and gold nanoparticles. Theoretical analysis and Monte Carlo simulations are used to explain the basic trends of the photoabsorption-induced secondary electron signal. Based on our current experiments and this analysis, we expect that the spatial resolution can be further improved to a few nanometers, thereby offering a general approach for nanometer-scale optical spectroscopic imaging and material characterization.

7.
J Chem Phys ; 150(17): 174706, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067881

RESUMEN

A new parameter set to model monoclinic gallium oxide, ß-Ga2O3, with the density functional tight binding (DFTB) method is developed. Using this new parameter set, DFTB calculations of bulk electronic band structure, surface energy of low-index surfaces, and formation energy of native point vacancy defects are performed and compared with the state-of-the-art density functional theory (DFT) calculations using the advanced hybrid exchange correlation functional. DFTB calculates the bandgap energy of 4.87 eV around the Fermi energy with the conduction band approximately following the DFT study by Peelaers and Van de Walle [Phys. Status Solidi B 252, 828 (2015)]. The surface energies calculated feature the correct order of stability among low index surfaces with surface energies in semiquantitative agreement with Bermudez' report [Chem. Phys. 323, 193 (2006)]. Oxygen and gallium vacancy defect formation energies and respective transition levels calculated using DFTB with a new parameter set are in semiquantitative agreement with the previous DFT reports by Varley et al. and Zacherle et al. [Appl. Phys. Lett. 97, 142106 (2010); Phys. Rev. B 87, 235206 (2013)]. This new semiempirical parameter set for ß-Ga2O3, validated in bulk, surface, and point properties, would be useful for large spatiotemporal quantum chemical calculations regarding ß-Ga2O3.

8.
Nano Lett ; 16(6): 3925-35, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27152879

RESUMEN

Penta-graphene (PG) has been identified as a novel two-dimensional (2D) material with an intrinsic bandgap, which makes it especially promising for electronics applications. In this work, we use first-principles lattice dynamics and iterative solution of the phonon Boltzmann transport equation (BTE) to determine the thermal conductivity of PG and its more stable derivative, hydrogenated penta-graphene (HPG). As a comparison, we also studied the effect of hydrogenation on graphene thermal conductivity. In contrast to hydrogenation of graphene, which leads to a dramatic decrease in thermal conductivity, HPG shows a notable increase in thermal conductivity, which is much higher than that of PG. Considering the necessity of using the same thickness when comparing thermal conductivity values of different 2D materials, hydrogenation leads to a 63% reduction in thermal conductivity for graphene, while it results in a 76% increase for PG. The high thermal conductivity of HPG makes it more thermally conductive than most other semiconducting 2D materials, such as the transition metal chalcogenides. Our detailed analyses show that the primary reason for the counterintuitive hydrogenation-induced thermal conductivity enhancement is the weaker bond anharmonicity in HPG than PG. This leads to weaker phonon scattering after hydrogenation, despite the increase in the phonon scattering phase space. The high thermal conductivity of HPG may inspire intensive research around HPG and other derivatives of PG as potential materials for future nanoelectronic devices. The fundamental physics understood from this study may open up a new strategy to engineer thermal transport properties of other 2D materials by controlling bond anharmonicity via functionalization.

9.
J Comput Chem ; 37(21): 1953-61, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27241227

RESUMEN

This investigation explores a new protocol, named Segmentation and Additive approach (SAA), to study exohedral noncovalent functionalization of single-walled carbon nanotubes with large molecules, such as polymers and biomolecules, by segmenting the entire system into smaller units to reduce computational cost. A key criterion of the segmentation process is the preservation of the molecular structure responsible for stabilization of the entire system in smaller segments. Noncovalent interaction of linoleic acid (LA, C18 H32 O2 ), a fatty acid, at the surface of a (10,0) zigzag nanotube is considered for test purposes. Three smaller segmented models have been created from the full (10,0)-LA system and interaction energies were calculated for these models and compared with the full system at different levels of theory, namely ωB97XD, LDA. The success of this SAA is confirmed as the sum of the interaction energies is in very good agreement with the total interaction energy. Besides reducing computational cost, another merit of SAA is an estimation of the contributions from different sections of the large system to the total interaction energy which can be studied in-depth using a higher level of theory to estimate several properties of each segment. On the negative side, bulk properties, such as HOMO-LUMO (highest occupied molecular orbital - lowest occupied molecular orbital) gap, of the entire system cannot be estimated by adding results from segment models. © 2016 Wiley Periodicals, Inc.

10.
Phys Chem Chem Phys ; 17(5): 3850-66, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25559141

RESUMEN

The pristine BNNTs contain both Lewis acid (boron) and Lewis base (nitrogen) centers at their surface. Interactions of ammonia and borane molecules, representatives of Lewis base and acid as adsorbates respectively, with matching sites at the surface of BNNTs, have been explored in the present DFT study. Adsorption energies suggest stronger chemisorption (about 15-20 kcal mol(-1)) of borane than ammonia (about 5-10 kcal mol(-1)) in both armchair (4,4) and zigzag (8,0) variants of the tube. NH3 favors (8,0) over the (4,4) tube, whereas BH3 exhibits the opposite preference, indicating some chirality dependence on acid-base interactions. A new feature of bonding is found in BH3/AlH3-BNNTs (at the edge site) complexes, where one hydrogen of the guest molecule is involved in three-center two-electron bonding, in addition to dative covalent bond (N: → B). This interaction causes a reversal of electron flow from borane/alane to BNNT, making the tube an electron acceptor, suggesting tailoring of electronic properties could be possible by varying strength of incoming Lewis acids. On the contrary, BNNTs always behave as electron acceptor in ammonia complexes. IR, XPS and NMR spectra show some characteristic features of complexes and can help experimentalists to identify not only structures of such complexes but also the location of the guest molecules and design second functionalizations. Interaction with several other neutral BF3, BCl3, BH2CH3 and ionic CH3(+) acids as well as amino group (CH3NH2 and NH2COOH) were also studied. The strongest interaction (>100 kcal mol(-1)) is found in BNNT-CH3(+) complexes and H-bonds are the only source of stability of NH2COOH-BNNT complexes.

11.
Phys Chem Chem Phys ; 16(3): 1008-14, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24281390

RESUMEN

In this work, we grow thin MoS2 films (50-150 nm) uniformly over large areas (>1 cm(2)) with strong basal plane (002) or edge plane (100) orientations to characterize thermal anisotropy. Measurement results are correlated with molecular dynamics simulations of thermal transport for perfect and defective MoS2 crystals. The correlation between predicted (simulations) and measured (experimental) thermal conductivity are attributed to factors such as crystalline domain orientation and size, thereby demonstrating the importance of thermal boundary scattering in limiting thermal conductivity in nano-crystalline MoS2 thin films. Furthermore, we demonstrate that the cross-plane thermal conductivity of the films is strongly impacted by exposure to ambient humidity.

12.
ACS Nano ; 18(6): 4756-4764, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295130

RESUMEN

Twisted 2D layered materials have garnered much attention recently as a class of 2D materials whose interlayer interactions and electronic properties are dictated by the relative rotation/twist angle between the adjacent layers. In this work, we explore a prototype of such a twisted 2D system, artificially stacked twisted bilayer graphene (TBLG), where we probe, using Raman spectroscopy, the changes in the interlayer interactions and electron-phonon scattering pathways as the twist angle is varied from 0° to 30°. The long-range Moiré potential of the superlattice gives rise to additional intravalley and intervalley scattering of the electrons in TBLG, which has been investigated through their Raman signatures. Density functional theory (DFT) calculations of the electronic band structure of the TBLG superlattices were found to be in agreement with the resonant Raman excitations across the van Hove singularities in the valence and conduction bands predicted for TBLG due to hybridization of bands from the two layers. We also observe that the relative rotation between the graphene layers has a marked influence on the second order overtone and combination Raman modes signaling a commensurate-incommensurate transition in TBLG as the twist angle increases. This serves as a convenient and rapid characterization tool to determine the degree of commensurability in TBLG systems.

13.
Nano Lett ; 12(7): 3491-6, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22716162

RESUMEN

Previously, thermal rectification has been reported in several low-dimensional shape-asymmetric nanomaterials. In this Letter, we demonstrate that a three-dimensional crystalline material with an asymmetric shape also displays as strong thermal rectification as low-dimensional materials do. The observed rectification is attributed to the stronger temperature dependence of vibration density of states in the narrower region of the asymmetric material, resulting from the small number of atomic degrees of freedom directly interacting with the thermostat. We also demonstrate that the often reported "device shape asymmetry" is not a sufficient condition for thermal rectification. Specifically, the size asymmetry in boundary thermal contacts is equally important toward determining the magnitude of thermal rectification. When the boundary thermal contacts retain the same size asymmetry as the nanomaterial, the overall system displays notable thermal rectification, in accordance with existing literature. However, when the wider region of the asymmetric nanomaterial is partially thermostatted by a smaller sized contact, thermal rectification decreases dramatically and even changes direction.

14.
Sci Rep ; 13(1): 16656, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789156

RESUMEN

The resistive switching behavior in Ta2O5 based memristors is largely controlled by the formation and annihilation of conductive filaments (CFs) that are generated by the migration of oxygen vacancies (OVs). To gain a fundamental insight on the switching characteristics, we have systematically investigated the electrical transport properties of two different Ta2O5 polymorphs ([Formula: see text]-Ta2O5 and λ-Ta2O5), using density functional theory calculations, and associated vacancy induced electrical conductivity using Boltzmann transport theory. The projected band structure and DOS in a few types of OVs, (two-fold (O2fV), three-fold (O3fV), interlayer (OILV), and distorted octahedral coordinated vacancies (OεV)) reveal that the presence of OILV would cause Ta2O5 to transition from a semiconductor to a metal, leading to improved electrical conductivity, whereas the other OV types only create localized mid-gap defect states within the bandgap. On studying the combined effect of OVs and Si-doping, a reduction of the formation energy and creation of defect states near the conduction band edge, is observed in Si-doped Ta2O5, and lower energy is found for the OVs near Si atoms, which would be advantageous to the uniformity of CFs produced by OVs. These findings can serve as guidance for further experimental work aimed at enhancing the uniformity and switching properties of resistance switching for Ta2O5-based memristors.

15.
ACS Nano ; 17(14): 12955-12970, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37405421

RESUMEN

Current silicon technology is on the verge of reaching its performance limits. This aspect, coupled with the global chip shortage, makes a solid case for steering our attention toward the accelerated commercialization of other electronic materials. Among the available suite of emerging electronic materials, two-dimensional materials, including transition metal dichalcogenides (TMDs), exhibit improved short-channel effects, high electron mobility, and integration into CMOS-compatible processing. While these materials may not be able to replace silicon at the current stages of development, they can supplement Si in the form of Si-compatible CMOS processing and be manufactured for tailored applications. However, the major hurdle in the path of commercialization of such materials is the difficulty in producing their wafer-scale forms, which are not necessarily single crystalline but on a large scale. Recent but exploratory interest in 2D materials from industries, such as TSMC, necessitates an in-depth analysis of their commercialization potential based on trends and progress in entrenched electronic materials (Si) and ones with a short-term commercialization potential (GaN, GaAs). We also explore the possibility of unconventional fabrication techniques, such as printing, for 2D materials becoming more mainstream and being adopted by industries in the future. In this Perspective, we discuss aspects to optimize cost, time, thermal budget, and a general pathway for 2D materials to achieve similar milestones, with an emphasis on TMDs. Beyond synthesis, we propose a lab-to-fab workflow based on recent advances that can operate on a low budget with a mainstream full-scale Si fabrication unit.

16.
Adv Mater ; 35(27): e2201064, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37021584

RESUMEN

A broad perspective of quantum technology state of the art is provided and critical stumbling blocks for quantum technology development are identified. Innovations in demonstrating and understanding electron entanglement phenomena using bulk and low-dimensional materials and structures are summarized. Correlated photon-pair generation via processes such as nonlinear optics is discussed. Application of qubits to current and future high-impact quantum technology development is presented. Approaches for realizing unique qubit features for large-scale encrypted communication, sensing, computing, and other technologies are still evolving; thus, materials innovation is crucially important. A perspective on materials modeling approaches for quantum technology acceleration that incorporate physics-based AI/ML, integrated with quantum metrology is discussed.

17.
ACS Appl Mater Interfaces ; 15(37): 44513-44520, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37697828

RESUMEN

In this work, we decorated piezoresponsive atomically thin ZnO nanosheets on a polymer surface using additive manufacturing (three-dimensional (3D) printing) technology to demonstrate electrical-mechanical coupling phenomena. The output voltage response of the 3D-printed architecture was regulated by varying the external mechanical pressures. Additionally, we have shown energy generation by placing the 3D-printed fabric on the padded shoulder strap of a bag with a load ranging from ∼5 to ∼75 N, taking advantage of the excellent mechanical strength and flexibility of the coated 3D-printed architecture. The ZnO coating layer forms a stable interface between ZnO nanosheets and the fabric, as confirmed by combining density functional theory (DFT) and electrical measurements. This effectively improves the output performance of the 3D-printed fabric by enhancing the charge transfer at the interface. Therefore, the present work can be used to build a new infrastructure for next-generation energy harvesters capable of carrying out several structural and functional responsibilities.

18.
Adv Mater ; 35(37): e2206648, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36378155

RESUMEN

The increasing interests in analog computing nowadays call for multipurpose analog computing platforms with reconfigurability. The advancement of analog computing, enabled by novel electronic elements like memristors, has shown its potential to sustain the exponential growth of computing demand in the new era of analog data deluge. Here, a platform of a memristive field-programmable analog array (memFPAA) is experimentally demonstrated with memristive devices serving as a variety of core analog elements and CMOS components as peripheral circuits. The memFPAA is reconfigured to implement a first-order band pass filter, an audio equalizer, and an acoustic mixed frequency classifier, as application examples. The memFPAA, featured with programmable analog memristors, memristive routing networks, and memristive vector-matrix multipliers, opens opportunities for fast prototyping analog designs as well as efficient analog applications in signal processing and neuromorphic computing.

19.
Ann Indian Acad Neurol ; 25(4): 703-706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211137

RESUMEN

Objective: To characterize the first patient of Perry syndrome reported from India. Methods: A 62-year-old gentleman presented with acute encephalopathy, hypercapnia, central hypoventilation, and seizures. He required ventilatory support for persistent respiratory failure even after the resolution of the encephalopathy. History revealed symptoms of orthostatic hypotension, episodes of shallow breathing, unsteadiness of gait, anxiety and depression, and significant weight loss for the previous two years. His mother and elder brother had succumbed to a similar illness. Investigations for neuromuscular diseases, including myasthenia and Pompes disease, were negative. Genetic tests for muscular dystrophies and myopathies, investigations for infectious, autoimmune, and para-neoplastic diseases were negative. Neuroimaging and electrophysiological studies were unremarkable. During his hospital stay, he developed rigidity and bradykinesia. Results: In view of the prominent respiratory failure, Parkinsonism, unexplained weight loss, and family history, he was tested for Perry syndrome. A heterozygous missense variation in Exon 2 of the DCTN1 gene that results in the substitution of Proline for Alanine at codon 45 (pA45P) was detected. This variant was not detected in his clinically unaffected brother. The clinical presentation and genetic test indicate Perry syndrome, a rare autosomal dominant fatal disease, which has never been reported from India. The patient improved with Levodopa and neurorehabilitation but eventually succumbed to his illness three years later. Conclusion: Perry syndrome, though rare, should be considered in the differential diagnosis of patients with a family history of Parkinsonism and central hypoventilation.

20.
ACS Appl Mater Interfaces ; 14(26): 30343-30351, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727691

RESUMEN

Continuous health monitoring through sensitive physiological signals (using a wearable device) is crucial for the early detection of heart diseases and breathing problems. Here, we have developed a flexible hBN/cotton hybrid device that can detect minor signals such as heartbeat and breathed-out air pressure. Systematic observation of the real-time motion sensing showed a peak-to-peak voltage output of ∼1.5 V for each heart rate pulse. The as-fabricated device showed a high voltage output of up to ∼10 V upon applying a pressure of ∼3 MPa. The FTIR results and DFT calculation suggested a chemical interaction between hBN and cellulose, giving rise to flat band characteristics and partially filled σ-bonding (sp2) hybridization. The atomic-scale chemical interface between atomically thin hBN and surface functional groups present on cotton resulted in charge localization and enhanced output voltage. An hBN/cotton hybrid device can bring new insights and opportunities to develop a self-charging and health-monitoring energy-harvesting cloth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA