Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Radiol Prot ; 44(2)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569480

RESUMEN

The number of healthcare workers occupationally exposed to ionizing radiation (IR) is increasing every year. As health effects from exposure to low doses IR have been reported, radiation protection (RP) in the context of occupational activities is a major concern. This study aims to assess the compliance of healthcare workers with RP policies, according to their registered cumulative dose, profession, and perception of radiation self-exposure and associated risk. Every healthcare worker from one of the participating hospitals in France with at least one dosimetric record for each year 2009, 2014, and 2019 in the SISERI registry was included and invited to complete an online questionnaire including information on the worker's occupational exposure, perception of IR-exposure risk and RP general knowledge. Hp(10) doses were provided by the SISERI system. Multivariate logistic regressions were used. Dosimeter wearing and RP practices compliance were strongly associated with 'feeling of being IR-exposed' (OR = 3.69, CI95% 2.04-6.66; OR = 4.60, CI95% 2.28-9.30, respectively). However, none of these factors was associated with RP training courses attendance. The main reason given for non-compliance is unsuitability or insufficient numbers of RP devices. This study provided useful information for RP policies. Making exposed workers aware of their own IR-exposure seems to be a key element to address in RP training courses. This type of questionnaire should be introduced into larger epidemiological studies. Dosimeter wearing and RP practices compliance are associated to feeling being IR-exposed. RP training courses should reinforce workers' awareness of their exposure to IR.


Asunto(s)
Exposición Profesional , Protección Radiológica , Humanos , Conocimientos, Actitudes y Práctica en Salud , Personal de Salud , Radiometría , Radiación Ionizante , Hospitales , Exposición Profesional/prevención & control , Exposición Profesional/análisis
2.
J Biol Chem ; 298(3): 101657, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131263

RESUMEN

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3ß-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3ß-OH group of ergosterol (Erg), yielding ergosteryl-3ß-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3ß-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3ß-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


Asunto(s)
Ascomicetos , Ergosterol , Glicina , Aminoácidos , Ascomicetos/genética , Ascomicetos/metabolismo , Ácido Aspártico , Glicina/biosíntesis , Glicina/genética , Glicina/metabolismo , Humanos , ARN de Hongos/genética , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo
3.
Eur Radiol ; 33(8): 5675-5684, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36930262

RESUMEN

OBJECTIVES: Health workers exposed to ionizing radiation account for + 50% of workers exposed to man-made radiation in France. Over the last decade, the use of radiation in medicine has increased due to the introduction of new practices. The EXposition des Professionnels de santE aux RayonnemenTs ioniSants study aims to evaluate and characterize the trends in radiation exposure of health workers in France between 2009 and 2019. METHODS: This retrospective study includes all health workers with at least one dosimetric record in the system for occupational dosimetry registration (Système d'information de la surveillance de l'exposition aux rayonnements ionisants) database for each of the years 2009, 2014, and 2019, in the hospitals included in the study. Individual external doses and socio-professional data were collected. Statistical analyses include descriptions, graphs, and logistic regressions. RESULTS: A total of 1457 workers were included (mean age: 39.8 years, 59% women). The average exposure significantly decreased between 2009 and 2019 (-0.008 mSv/year, p < 0.05). There were large discrepancies in trends according to professions, departments, hospitals, and gender. Over the 10-year study period, radiologic technologists and physicians were the most exposed (0.15 mSv (95%CI 0.14-0.16) and 0.13 mSv (0.06-0.21), respectively), but their exposure tended to decrease. Workers in nuclear medicine departments had the highest radiation exposure (0.36 mSv (0.33-0.39)), which remained stable over time. Thirty-eight percent of recorded doses were nonzero in 2009, decreasing to 20% in 2019. CONCLUSIONS: This study allowed to identify physicians and radiologic technologists in nuclear medicine departments as the most exposed medical workers in France, and to show an overall decrease trend in radiation exposure. This should be instructive for radiation monitoring and safety of exposed medical workers. KEY POINTS: • Radiation exposure of healthcare workers in most medical departments has steadily decreased between 2009 and 2019 in several French hospitals. • The number of zero doses consistently increased during the study period. • Workers in nuclear medicine departments are the most exposed, especially radiologic technologists and physicians.


Asunto(s)
Exposición Profesional , Exposición a la Radiación , Monitoreo de Radiación , Humanos , Femenino , Adulto , Masculino , Dosis de Radiación , Estudios Retrospectivos , Radiación Ionizante , Cuerpo Médico
4.
Proc Natl Acad Sci U S A ; 117(26): 14948-14957, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541034

RESUMEN

Diverting aminoacyl-transfer RNAs (tRNAs) from protein synthesis is a well-known process used by a wide range of bacteria to aminoacylate membrane constituents. By tRNA-dependently adding amino acids to glycerolipids, bacteria change their cell surface properties, which intensifies antimicrobial drug resistance, pathogenicity, and virulence. No equivalent aminoacylated lipids have been uncovered in any eukaryotic species thus far, suggesting that tRNA-dependent lipid remodeling is a process restricted to prokaryotes. We report here the discovery of ergosteryl-3ß-O-l-aspartate (Erg-Asp), a conjugated sterol that is produced by the tRNA-dependent addition of aspartate to the 3ß-OH group of ergosterol, the major sterol found in fungal membranes. In fact, Erg-Asp exists in the majority of "higher" fungi, including species of biotechnological interest, and, more importantly, in human pathogens like Aspergillus fumigatus We show that a bifunctional enzyme, ergosteryl-3ß-O-l-aspartate synthase (ErdS), is responsible for Erg-Asp synthesis. ErdS corresponds to a unique fusion of an aspartyl-tRNA synthetase-that produces aspartyl-tRNAAsp (Asp-tRNAAsp)-and of a Domain of Unknown Function 2156, which actually transfers aspartate from Asp-tRNAAsp onto ergosterol. We also uncovered that removal of the Asp modifier from Erg-Asp is catalyzed by a second enzyme, ErdH, that is a genuine Erg-Asp hydrolase participating in the turnover of the conjugated sterol in vivo. Phylogenomics highlights that the entire Erg-Asp synthesis/degradation pathway is conserved across "higher" fungi. Given the central roles of sterols and conjugated sterols in fungi, we propose that this tRNA-dependent ergosterol modification and homeostasis system might have broader implications in membrane remodeling, trafficking, antimicrobial resistance, or pathogenicity.


Asunto(s)
Ácido Aspártico/metabolismo , Aspergillus fumigatus/metabolismo , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Esteroles/metabolismo , Aminoacilación , Ácido Aspártico/química , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , ARN de Hongos/química , ARN de Hongos/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Esteroles/química
5.
RNA Biol ; 15(4-5): 659-666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29168435

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNAs to produce the aminoacyl-tRNAs (aa-tRNAs) required by ribosomes for translation of the genetic message into proteins. To ensure the accuracy of tRNA aminoacylation, and consequently the fidelity of protein synthesis, some aaRSs exhibit a proofreading (editing) site, distinct from the aa-tRNA synthetic site. The aaRS editing site hydrolyzes misacylated products formed when a non-cognate amino acid is used during tRNA charging. Because aaRSs play a central role in protein biosynthesis and cellular life, these proteins represent longstanding targets for therapeutic drug development to combat infectious diseases. Most existing aaRS inhibitors target the synthetic site, and it is only recently that drugs targeting the proofreading site have been considered. In the present study, we developed a robust assay for the high-throughput screening of libraries of inhibitors targeting both the synthetic and the proofreading sites of up to four aaRSs simultaneously. Thus, this assay allows for screening of eight distinct enzyme active sites in a single experiment. aaRSs from several prominent human pathogens (i.e., Mycobacterium tuberculosis, Plasmodium falciparum, and Escherichia coli) were used for development of this assay.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Ensayos Analíticos de Alto Rendimiento , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , Aminoacilación de ARN de Transferencia/efectos de los fármacos , Aminoacil-ARNt Sintetasas/metabolismo , Clonación Molecular , Descubrimiento de Drogas , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Mupirocina/farmacología , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Aminoacilación de ARN de Transferencia/genética
6.
RNA Biol ; 15(4-5): 480-491, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28816600

RESUMEN

tRNA-dependent addition of amino acids to lipids on the outer surface of the bacterial membrane results in decreased effectiveness of antimicrobials such as cationic antimicrobial peptides (CAMPs) that target the membrane, and increased virulence of several pathogenic species. After a brief introduction to CAMPs and the various bacterial resistance mechanisms used to counteract these compounds, this review focuses on recent advances in tRNA-dependent pathways for lipid modification in bacteria. Phenotypes associated with amino acid lipid modifications and regulation of their expression will also be discussed.


Asunto(s)
Bacterias/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia , Aminoácidos/genética , Aminoácidos/metabolismo , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Cardiolipinas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Diglicéridos/metabolismo , Farmacorresistencia Bacteriana/genética , Fosfatidilgliceroles/metabolismo , Pliegue de Proteína , ARN de Transferencia/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Virulencia
7.
Mol Cell ; 39(2): 209-21, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20670890

RESUMEN

We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid to a protein resembling tRNA rather than to a tRNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Microbiana , Factores de Elongación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Salmonella enterica , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Islas Genómicas/genética , Lisina/análogos & derivados , Lisina/genética , Lisina/metabolismo , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Ratones , Factores de Elongación de Péptidos/genética , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidad , Factores de Virulencia/genética
8.
Mol Cell ; 33(5): 654-60, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285947

RESUMEN

Faithful translation of the genetic code depends on the GTPase EF-Tu delivering correctly charged aminoacyl-tRNAs to the ribosome for pairing with cognate codons. The accurate coupling of cognate amino acids and tRNAs by the aminoacyl-tRNA synthetases is achieved through a combination of substrate specificity and product editing. Once released by aminoacyl-tRNA synthetases, both cognate and near-cognate aminoacyl-tRNAs were considered to be committed to ribosomal protein synthesis through their association with EF-Tu. Here we show instead that aminoacyl-tRNAs in ternary complex with EF-Tu*GTP can readily dissociate and rebind to aminoacyl-tRNA synthetases. For mischarged species, this allows resampling by the product editing pathway, leading to a reduction in the overall error rate of aminoacyl-tRNA synthesis. Resampling of mischarged tRNAs was shown to increase the accuracy of translation over ten fold during in vitro protein synthesis, supporting the presence of an additional quality control step prior to translation elongation.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Guanosina Trifosfato/metabolismo , Extensión de la Cadena Peptídica de Translación , Factor Tu de Elongación Peptídica/metabolismo , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia , Sitios de Unión , Escherichia coli/genética , Código Genético , Cinética , Leucina-ARNt Ligasa/metabolismo , Conformación de Ácido Nucleico , Péptidos/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , ARN Bacteriano , ARN de Transferencia/química , Especificidad por Sustrato , Tirosina-ARNt Ligasa/metabolismo
9.
Mol Microbiol ; 98(4): 681-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26235234

RESUMEN

Aminoacyl-phosphatidylglycerol synthases (aaPGSs) are membrane proteins that utilize aminoacylated tRNAs to modify membrane lipids with amino acids. Aminoacylation of membrane lipids alters the biochemical properties of the cytoplasmic membrane and enables bacteria to adapt to changes in environmental conditions. aaPGSs utilize alanine, lysine and arginine as modifying amino acids, and the primary lipid recipients have heretofore been defined as phosphatidylglycerol (PG) and cardiolipin. Here we identify a new pathway for lipid aminoacylation, conserved in many Actinobacteria, which results in formation of Ala-PG and a novel alanylated lipid, Alanyl-diacylglycerol (Ala-DAG). Ala-DAG formation in Corynebacterium glutamicum is dependent on the activity of an aaPGS homolog, whereas formation of Ala-PG requires the same enzyme acting in concert with a putative esterase encoded upstream. The presence of alanylated lipids is sufficient to enhance the bacterial fitness of C. glutamicum cultured in the presence of certain antimicrobial agents, and elucidation of this system expands the known repertoire of membrane lipids acting as substrates for amino acid modification in bacterial cells.


Asunto(s)
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Diglicéridos/metabolismo , Fosfatidilgliceroles/metabolismo , ARN de Transferencia/genética , Aminoacilación , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/crecimiento & desarrollo , Aptitud Genética , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo
10.
J Biol Chem ; 288(31): 22768-76, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23793054

RESUMEN

Aminoacylphosphatidylglycerol synthases (aaPGSs) are enzymes that transfer amino acids from aminoacyl-tRNAs (aa-tRNAs) to phosphatidylglycerol (PG) to form aa-PG in the cytoplasmic membrane of bacteria. aa-PGs provide bacteria with resistance to a range of antimicrobial compounds and stress conditions. Enterococcus faecium encodes a triple-specific aaPGS (RakPGS) that utilizes arginine, alanine, and lysine as substrates. Here we identify a novel hydrolase (AhyD), encoded immediately adjacent to rakPGS in E. faecium, which is responsible for the hydrolysis of aa-PG. The genetic synteny of aaPGS and ahyD is conserved in >60 different bacterial species. Deletion of ahyD in E. faecium resulted in increased formation of Ala-PG and Lys-PG and increased sensitivity to bacitracin. Our results suggest that AhyD and RakPGS act together to maintain optimal levels of aa-PG in the bacterial membrane to confer resistance to certain antimicrobial compounds and stress conditions.


Asunto(s)
Enterococcus faecium/metabolismo , Hidrolasas/metabolismo , Fosfatidilgliceroles/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/enzimología , Membrana Celular/metabolismo , Enterococcus faecium/enzimología , Enterococcus faecium/genética , Genes Bacterianos , Hidrólisis , Filogenia
11.
BMJ Open ; 14(6): e084285, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38904132

RESUMEN

OBJECTIVE: This study aimed at investigating the relationship between occupational exposure to external ionising radiation and central nervous system (CNS) tumours mortality in healthcare workers working in France. DESIGN AND SETTING: The Occupational Radiation-Induced Cancer in Medical staff (ORICAMs) nested case-control study was conducted based on the dosimetric records of the national register of occupational dosimetry (Système d'information de la surveillance de l'exposition aux rayonnements ionisants). PARTICIPANTS AND METHODS: 33 CNS tumour deaths occurred between 2002 and 2012 among the ORICAMs cohort composed of 164 015 healthcare workers. Each case was matched to five controls alive at the time of the corresponding case's death, based on sex, year of birth, date of enrolment in the cohort and duration of follow-up. All participants were badge monitored for external radiation exposure, expressed in Hp(10). Conditional logistic regression was used to analyse the dose-response relationship between radiation dose and CNS mortality. RESULTS: Cases were exposed to a mean cumulative career radiation dose of 5.8±13.7 (max: 54.3) millisievert (mSv) compared with 4.1±15.2 (142.2) mSv for controls. No statistically significant association was found between CNS tumour mortality and cumulative whole-body career dose (OR=1.00, 95% CI 0.98 to 1.03), duration of exposure (OR=1.03; 95% CI 0.95 to 1.12) or age at first exposure (OR=0.98; 95% CI 0.91 to 1.06). CONCLUSION: We found no evidence of an association between external radiation exposure and CNS tumour risk in healthcare workers. Limitations of the study include low statistical power and short duration of follow-up.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Personal de Salud , Neoplasias Inducidas por Radiación , Exposición Profesional , Radiación Ionizante , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/estadística & datos numéricos , Estudios de Casos y Controles , Francia/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/etiología , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/mortalidad , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/etiología , Enfermedades Profesionales/mortalidad , Relación Dosis-Respuesta en la Radiación , Modelos Logísticos , Factores de Riesgo , Exposición a la Radiación/efectos adversos
12.
Nat Chem Biol ; 7(10): 667-9, 2011 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-21841797

RESUMEN

The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts containing non-α-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded α-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases.


Asunto(s)
Lisina-ARNt Ligasa/metabolismo , Lisina/análogos & derivados , Factores de Elongación de Péptidos/metabolismo , Lisina/química , Lisina/metabolismo , Lisina-ARNt Ligasa/química , Modelos Moleculares , Estructura Molecular , Factores de Elongación de Péptidos/química , Estereoisomerismo
13.
Proc Natl Acad Sci U S A ; 107(9): 4063-8, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20160120

RESUMEN

Protein synthesis has an overall error rate of approximately 10(-4) for each mRNA codon translated. The fidelity of translation is mainly determined by two events: synthesis of cognate amino acid:tRNA pairs by aminoacyl-tRNA synthetases (aaRSs) and accurate selection of aminoacyl-tRNAs (aa-tRNAs) by the ribosome. To ensure faithful aa-tRNA synthesis, many aaRSs employ a proofreading ("editing") activity, such as phenylalanyl-tRNA synthetases (PheRS) that hydrolyze mischarged Tyr-tRNA(Phe). Eukaryotes maintain two distinct PheRS enzymes, a cytoplasmic (ctPheRS) and an organellar form. CtPheRS is similar to bacterial enzymes in that it consists of a heterotetramer in which the alpha-subunits contain the active site and the beta-subunits harbor the editing site. In contrast, mitochondrial PheRS (mtPheRS) is an alpha-subunit monomer that does not edit Tyr-tRNA(Phe), and a comparable transacting activity does not exist in organelles. Although mtPheRS does not edit, it is extremely specific as only one Tyr-tRNA(Phe) is synthesized for every approximately 7,300 Phe-tRNA(Phe), compatible with an error rate in translation of approximately 10(-4). When the error rate of mtPheRS was increased 17-fold, the corresponding strain could not grow on respiratory media and the mitochondrial genome was rapidly lost. In contrast, error-prone mtPheRS, editing-deficient ctPheRS, and their wild-type counterparts all supported cytoplasmic protein synthesis and cell growth. These striking differences reveal unexpectedly divergent requirements for quality control in different cell compartments and suggest that the limits of translational accuracy may be largely determined by cellular physiology.


Asunto(s)
Biosíntesis de Proteínas , Control de Calidad , ARN de Transferencia/genética , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , Homología de Secuencia de Aminoácido
14.
Microbiol Spectr ; : e0142923, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768052

RESUMEN

Lysyl-diacylglycerol (Lys-DAG) was identified three decades ago in Mycobacterium phlei, but the biosynthetic pathway and function of this aminoacylated lipid have since remained uncharacterized. Combining genetic methods, mass spectrometry, and biochemical approaches, we show that the multiple peptide resistance factor (MprF) homolog LysX from Corynebacterium pseudotuberculosis and two mycobacterial species is responsible for Lys-DAG synthesis. LysX is conserved in most Actinobacteria and was previously implicated in the synthesis of another modified lipid, lysyl-phosphatidylglycerol (Lys-PG), in Mycobacterium tuberculosis. Although we detected low levels of Lys-PG in the membrane of C. pseudotuberculosis, our data suggest that Lys-PG is not directly synthesized by LysX and may require an additional downstream pathway, which is as yet undefined. Our results show that LysX in C. pseudotuberculosis is a major factor of resistance against a variety of positively charged antibacterial agents, including cationic antimicrobial peptides (e.g., human peptide LL-37 and polymyxin B) and aminoglycosides (e.g., gentamycin and apramycin). Deletion of lysX caused an increase in cellular membrane permeability without dissipation of the membrane potential, suggesting that loss of the protein does not result in mechanical damage to the cell membrane. Furthermore, lysX-deficient cells exhibited an attenuated virulence phenotype in a Galleria mellonella infection model, supporting a role for LysX during infection. Altogether, Lys-DAG represents a novel molecular determinant for antimicrobial resistance and virulence that may be widespread in Actinobacteria and points to a richer landscape than previously realized of lipid components contributing to overall membrane physiology in this important bacterial phylum. IMPORTANCE In the past two decades, tRNA-dependent modification of membrane phosphatidylglycerol has been implicated in altering the biochemical properties of the cell surface, thereby enhancing the antimicrobial resistance and virulence of various bacterial pathogens. Here, we show that in several Actinobacteria, the multifunctional protein LysX attaches lysine to diacylglycerol instead of phosphatidylglycerol. We found that lysyl-diacylglycerol (Lys-DAG) confers high levels of resistance against various cationic antimicrobial peptides and aminoglycosides and also enhances virulence. Our data show that Lys-DAG is a lipid commonly found in important actinobacterial pathogens, including Mycobacterium and Corynebacterium species.

15.
PLoS One ; 18(6): e0286910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37289793

RESUMEN

Medical personnel represent the largest group of workers occupationally exposed to ionizing radiation. Although the health risks associated with occupational exposure to low doses of ionizing radiation in the medical field have been investigated in several national cohorts, no study has been conducted in France to date. The ORICAMs (Occupational Radiation Induced Cancer in Medical staff) cohort is a nationwide French longitudinal cohort of medical workers exposed to ionizing radiation aiming to investigate the risk of radiation-associated cancer and non-cancer mortality. The ORICAMs cohort was set up in 2011 and includes all medical personnel monitored for ionizing radiation exposure with at least one dosimetric record in the SISERI database (the national registry for monitoring ionizing radiation exposure in workers) over the period 2002-2012. Causes of death were abstracted from death certificates and coded according to ICD-10. The follow-up ended on 31/12/2013. Standardized mortality ratios (SMRs) were calculated by cause of death to compare the mortality in the cohort to that in the French population, by gender, age group and calendar period. Among the 164,015 workers included in the cohort (60% women) a total of 1,358 deaths (892 in male and 466 in female) were reported. The observed number of all-cause deaths was significantly lower than expected based on national rates in both male (SMR = 0.35; 95% CI: 0.33, 0.38; ndeaths = 892) and female (SMR = 0.41; 95% CI: 0.38, 0.45; ndeaths = 466). This analysis leads to the conclusion that mortality in French workers exposed to medical radiation is significantly lower than the national reference rates. However, these results based on a comparative analysis with national rates may be impacted by the healthy worker effect towards low SMRs, and do not enable to establish a potential relationship between occupational exposure and mortality risk, even if we may suspect an impact of high SES of these professionals on the observed decreased mortality. Thus, further dose-response analyses based on individual ionizing radiation exposure and job's type will be conducted to characterize correlation between risk of cancer mortality and occupational exposure.


Asunto(s)
Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Exposición a la Radiación , Humanos , Masculino , Femenino , Estudios de Cohortes , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Exposición a la Radiación/efectos adversos , Radiación Ionizante , Personal de Salud , Exposición Profesional/efectos adversos
16.
J Appl Biomater Funct Mater ; 21: 22808000231184688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680075

RESUMEN

Microbial biofilm build-up in water distribution systems can pose a risk to human health and pipe material integrity. The impact is more devastating in space stations and to astronauts due to the isolation from necessary replacement parts and medical resources. As a result, there is a need for coatings to be implemented onto the inner region of the pipe to minimize the adherence and growth of biofilms. Lubricant-infused surfaces has been one such interesting material for anti-biofouling applications in which their slippery property promotes repellence to many liquids and thus prevents bacterial adherence. Textured and porous films are suitable substrate candidates to infuse and contain the lubricant. However, there is little investigation in utilizing a nanoparticulate thin film as the substrate material for lubricant infusion. A nanoparticulate film has high porosity within the structure which can promote greater lubricant infusion and retention. The implementation as a thin film structure aids to reduce material consumption and cost. In our study, we utilized a well-studied nanoporous thin film fabricated via layer-by-layer assembly of polycations and colloid silica and then calcination for greater stability. The film was further functionalized to promote fluorinated groups and improve affinity with a fluorinated lubricant. The pristine nanoporous film was characterized to determine its morphology, thickness, wettability, and porosity. The lubricant-infused film was then tested for its lubricant layer stability upon various washing conditions and its performance against bacterial biofilm adherence as a result of its slippery property. Overall, the modified silica nanoparticulate thin film demonstrated potential as a base substrate for lubricant-infused surface fabrication that repelled against ambient aqueous solvents and as an anti-biofouling coating that demonstrated low biofilm coverage and colony forming unit values. Further optimization to improve lubricant retention or incorporation of a secondary function can aid in developing better coatings for biofilm mitigation.


Asunto(s)
Incrustaciones Biológicas , Lubricantes , Humanos , Lubricantes/química , Dióxido de Silicio/química , Incrustaciones Biológicas/prevención & control , Biopelículas
17.
J Bacteriol ; 194(2): 413-25, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22081389

RESUMEN

Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin.


Asunto(s)
Membrana Celular/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Factores de Elongación de Péptidos/metabolismo , Salmonella typhimurium/citología , Salmonella typhimurium/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Detergentes , Farmacorresistencia Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación , Concentración Osmolar , Factores de Elongación de Péptidos/genética , Permeabilidad , Plásmidos , Salmonella typhimurium/genética , Regulación hacia Arriba
18.
SLAS Discov ; 27(2): 114-120, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35058189

RESUMEN

Malaria, an infectious disease caused by protozoan parasites from the genus Plasmodium, represents a serious global health threat. The continued emergence of drug resistant strains has severely decreased current antimalarial drug efficacy and led to a perpetual race for drug discovery. Most protozoan parasites, including Plasmodium spp., are unable to synthesize purines de novo and instead rely on an essential purine salvage pathway for acquisition of purines from the infected host. Because purines are essential for Plasmodium growth and survival, the enzymes of the purine salvage pathway represent promising targets for drug discovery. Target-based high-throughput screening (HTS) assays traditionally focus on a single target, which severely limits the screening power of this type of approach. To circumvent this limitation, we have reconstituted the purine salvage pathway from Plasmodium falciparum in an assay combining four drug targets. This assay was developed for HTS and optimized to detect partial inhibition of any of the four enzymes in the pathway. Inhibitors of several enzymes in the pathway were identified in a pilot screen, with several compounds exhibiting effective inhibition when provided in micromolar amounts.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Antimaláricos/farmacología , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Purinas/metabolismo , Purinas/farmacología
19.
Proc Natl Acad Sci U S A ; 105(12): 4667-72, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18305156

RESUMEN

Multiple peptide resistance (MprF) virulence factors control cellular permeability to cationic antibiotics by aminoacylating inner membrane lipids. It has been shown previously that one class of MprF can use Lys-tRNA(Lys) to modify phosphatidylglycerol (PG), but the mechanism of recognition and possible role of other MprFs are unknown. Here, we used an in vitro reconstituted lipid aminoacylation system to investigate the two phylogenetically distinct MprF paralogs (MprF1 and MprF2) found in the bacterial pathogen Clostridium perfringens. Although both forms of MprF aminoacylate PG, they do so with different amino acids; MprF1 is specific for Ala-tRNA(Ala), and MprF2 utilizes Lys-tRNA(Lys). This provides a mechanism by which the cell can fine tune the charge of the inner membrane by using the neutral amino acid alanine, potentially providing resistance to a broader range of antibiotics than offered by lysine modification alone. Mutation of tRNA(Ala) and tRNA(Lys) had little effect on either MprF activity, indicating that the aminoacyl moiety is the primary determinant for aminoacyl-tRNA recognition. The lack of discrimination of the tRNA is consistent with the role of MprF as a virulence factor, because species-specific differences in tRNA sequence would not present a barrier to horizontal gene transfer. Taken together, our findings reveal how the MprF proteins provide a potent virulence mechanism by which pathogens can readily acquire resistance to chemically diverse antibiotics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Metabolismo de los Lípidos , ARN/metabolismo , Factores de Virulencia/metabolismo , Aminoacilación , Catálisis , Membrana Celular/metabolismo , Cromatografía en Capa Delgada , Clostridium perfringens/patogenicidad , Evolución Molecular , Cinética , Factor Tu de Elongación Peptídica/metabolismo , Fosfatidilgliceroles/biosíntesis , Filogenia , Aminoacil-ARN de Transferencia/metabolismo
20.
Steroids ; 169: 108823, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713678

RESUMEN

Aminoacylated ergosterol such as 1-ergosteryl aspartate (Erg-Asp) is a new lipid component recently discovered in fungi. In order to study physiological functions of this novel sterol derivative and to develop potential antifungal agents, we established the method to synthesize aminoacylated ergosterol derivatives. Herein, we report the synthesis of Erg-Asp as well as some other aminoacylated ergosterols (Erg-Gly, Erg-Ala, Erg-Leu, Erg-Ile, and Erg-Val) using Boc protected amino acids.


Asunto(s)
Ergosterol , Antifúngicos , Fragmentos de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA