Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 83(21): 3801-3817.e8, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922872

RESUMEN

Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.


Asunto(s)
Histonas , ARN Polimerasa II , Humanos , Histonas/genética , Histonas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Transcripción Genética , Cromatina/genética , Empalme Alternativo
2.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182478

RESUMEN

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Composición de Base , Exones/genética , Intrones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA