RESUMEN
Superposition, entanglement and non-locality constitute fundamental features of quantum physics. The fact that quantum physics does not follow the principle of local causality1-3 can be experimentally demonstrated in Bell tests4 performed on pairs of spatially separated, entangled quantum systems. Although Bell tests, which are widely regarded as a litmus test of quantum physics, have been explored using a broad range of quantum systems over the past 50 years, only relatively recently have experiments free of so-called loopholes5 succeeded. Such experiments have been performed with spins in nitrogen-vacancy centres6, optical photons7-9 and neutral atoms10. Here we demonstrate a loophole-free violation of Bell's inequality with superconducting circuits, which are a prime contender for realizing quantum computing technology11. To evaluate a Clauser-Horne-Shimony-Holt-type Bell inequality4, we deterministically entangle a pair of qubits12 and perform fast and high-fidelity measurements13 along randomly chosen bases on the qubits connected through a cryogenic link14 spanning a distance of 30 metres. Evaluating more than 1 million experimental trials, we find an average S value of 2.0747 ± 0.0033, violating Bell's inequality with a P value smaller than 10-108. Our work demonstrates that non-locality is a viable new resource in quantum information technology realized with superconducting circuits with potential applications in quantum communication, quantum computing and fundamental physics15.
RESUMEN
Homo- and heterodyne detection are fundamental techniques for measuring propagating electromagnetic fields. However, applying these techniques to stationary fields confined in cavities poses a challenge. As a way to overcome this challenge, we propose to use repeated indirect measurements of a two-level system interacting with the cavity. We demonstrate numerically that the proposed measurement scheme faithfully reproduces measurement statistics of homo- or heterodyne detection. The scheme can be implemented in various physical architectures, including circuit quantum electrodynamics. Our results pave the way for implementation of quantum algorithms requiring linear detection of stationary modes, including quantum verification protocols.
RESUMEN
We introduce a new approach to Gottesman-Kitaev-Preskill (GKP) states that treats their finite-energy version in an exact manner. Based on this analysis, we develop new qubit-oscillator circuits that autonomously stabilize a GKP manifold, correcting errors without relying on qubit measurements. Finally, we show numerically that logical information encoded in GKP states is very robust against typical oscillator noise sources when stabilized by these new circuits.
RESUMEN
The realization of a high-efficiency microwave single photon detector is a long-standing problem in the field of microwave quantum optics. Here, we propose a quantum nondemolition, high-efficiency photon detector that can readily be implemented in present state-of-the-art circuit quantum electrodynamics. This scheme works in a continuous fashion, gaining information about the photon arrival time as well as about its presence. The key insight that allows us to circumvent the usual limitations imposed by measurement backaction is the use of long-lived dark states in a small ensemble of inhomogeneous artificial atoms to increase the interaction time between the photon and the measurement device. Using realistic system parameters, we show that large detection fidelities are possible.
RESUMEN
Multiqubit parity measurements are essential to quantum error correction. Current realizations of these measurements often rely on ancilla qubits, a method that is sensitive to faulty two-qubit gates and that requires notable experimental overhead. We propose a hardware-efficient multiqubit parity measurement exploiting the bifurcation dynamics of a parametrically driven nonlinear oscillator. This approach takes advantage of the resonator's parametric oscillation threshold, which depends on the joint parity of dispersively coupled qubits, leading to high-amplitude oscillations for one parity subspace and no oscillation for the other. We present analytical and numerical results for two- and four-qubit parity measurements, with high-fidelity readout preserving the parity eigenpaces. Moreover, we discuss a possible realization that can be readily implemented with the current circuit quantum electrodynamics (QED) experimental toolbox. These results could lead to substantial simplifications in the experimental implementation of quantum error correction and notably of the surface code.