Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9118, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643335

RESUMEN

We introduce a new algorithm MaxCliqueWeight for identifying a maximum weight clique in a weighted graph, and its variant MaxCliqueDynWeight with dynamically varying bounds. This algorithm uses an efficient branch-and-bound approach with a new weighted graph coloring algorithm that efficiently determines upper weight bounds for a maximum weighted clique in a graph. We evaluate our algorithm on random weighted graphs with node counts up to 10,000 and on standard DIMACS benchmark graphs used in a variety of research areas. Our findings reveal a remarkable improvement in computational speed when compared to existing algorithms, particularly evident in the case of high-density random graphs and DIMACS graphs, where our newly developed algorithm outperforms existing alternatives by several orders of magnitude. The newly developed algorithm and its variant are freely available to the broader research community at http://insilab.org/maxcliqueweight , paving the way for transformative applications in various research areas, including drug discovery.

2.
J Chem Inf Model ; 53(9): 2217-28, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23965016

RESUMEN

A new exact parallel maximum clique algorithm MaxCliquePara, which finds the maximum clique (the fully connected subgraph) in undirected general and protein graphs, is presented. First, a new branch and bound algorithm for finding a maximum clique on a single computer core, which builds on ideas presented in two published state of the art sequential algorithms is implemented. The new sequential MaxCliqueSeq algorithm is faster than the reference algorithms on both DIMACS benchmark graphs as well as on protein-derived product graphs used for protein structural comparisons. Next, the MaxCliqueSeq algorithm is parallelized by splitting the branch-and-bound search tree to multiple cores, resulting in MaxCliquePara algorithm. The ability to exploit all cores efficiently makes the new parallel MaxCliquePara algorithm markedly superior to other tested algorithms. On a 12-core computer, the parallelization provides up to 2 orders of magnitude faster execution on the large DIMACS benchmark graphs and up to an order of magnitude faster execution on protein product graphs. The algorithms are freely accessible on http://commsys.ijs.si/~matjaz/maxclique.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Gráficos por Computador , Proteínas/química , Modelos Moleculares , Conformación Proteica , Factores de Tiempo
3.
J Comput Chem ; 33(27): 2199-203, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22718529

RESUMEN

The ProBiS algorithm performs a local structural comparison of the query protein surface against the nonredundant database of protein structures. It finds proteins that have binding sites in common with the query protein. Here, we present a new parallelized algorithm, Parallel-ProBiS, for detecting similar binding sites on clusters of computers. The obtained speedups of the parallel ProBiS scale almost ideally with the number of computing cores up to about 64 computing cores. Scaling is better for larger than for smaller query proteins. For a protein with almost 600 amino acids, the maximum speedup of 180 was achieved on two interconnected clusters with 248 computing cores. Source code of Parallel-ProBiS is available for download free for academic users at http://probis.cmm.ki.si/download.


Asunto(s)
Algoritmos , Proteínas/química , Sitios de Unión , Biología Computacional , Bases de Datos de Proteínas , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA