Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 36(10): e22550, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36098482

RESUMEN

Clinical unpredictability and variability following fat grafting remain non-negligible problems due to the unknown mechanism of grafted fat retention. The role of the extracellular matrix (ECM), which renders cells with structural and biochemical support, has been ignored. This study aimed to clarify the ECM remodeling process, related cellular events, and the spatiotemporal relationship between ECM remodeling and adipocyte survival and adipogenesis after fat grafting. Labeled Coleman fat by the matrix-tracing technique was grafted in nude mice. The ECM remodeling process and cellular events were assessed in vivo. The related cytokines were evaluated by qRT-PCR. An in vitro cell migration assay was performed to verify the chemotactic effect of M2-like macrophages on fibroblasts. The results demonstrated that in the periphery, most of the adipocytes of the graft survived or regenerated, and the graft-derived ECM was gradually replaced by the newly-formed ECM. In the central parts, most adipocytes in the grafts died shortly after, and a small part of the graft-derived and newly-formed ECM was expressed with irregular morphology. Adipose ECM remodeling is associated with increased infiltration of macrophages and fibroblasts, as well as up-regulated expression of cytokines in the adipose tissue. To sum up, our results describe the various preservation mode of fat grafts after transplantation and underscore the importance of macrophage-mediated ECM remodeling in graft preservation after fat grafting. The appreciation and manipulation of underlying mechanisms that are operant in this setting stand to explore new therapeutic approaches and improve clinical outcomes of fat grafting.


Asunto(s)
Tejido Adiposo , Matriz Extracelular , Animales , Citocinas , Macrófagos , Ratones , Ratones Desnudos
2.
Aesthet Surg J ; 42(5): NP337-NP350, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-34849564

RESUMEN

BACKGROUND: Skin filler is an option for treating skin aging and wrinkles; however, currently used fillers are limited by poor biocompatibility, rapid degradation, and possible hypersensitivity reactions. Autologous adipose tissue-derived products have been recognized as promising options for skin rejuvenation. OBJECTIVES: This study aimed to develop a novel adipose-derived product for skin filling. METHODS: Adipose collagen fragment (ACF) was prepared through pulverization, filtration, and centrifugation. The macrography, structure, types of collagen, and cell viability of ACF were evaluated by immunostaining, western blotting, and cell culture assays. ACF, nanofat, and phosphate-buffered saline (9 spots/side, 0.01 mL/spot) were intradermally injected in the dorsal skin of 36 female BALB/c nude mice; the skin filling capacity and the collagen remodeling process were then investigated. Twenty-one female patients with fine rhytides in the infraorbital areas were enrolled and received clinical applications of ACF treatment. Therapeutic effects and patients' satisfaction scores were recorded. RESULTS: The mean [standard deviation] yield of ACF from 50 mL of Coleman fat was 4.91 [0.25] mL. ACF contained nonviable cells and high levels of collagen I, collagen IV, and laminin. Fibroblasts and procollagen significantly increased in ACF and ACF-treated dermis (P < 0.05). Overall, 85.7% of patients were satisfied with the therapy results, and no infections, injection site nodules, or other unwanted side effects were observed. CONCLUSIONS: ACF significantly improved dermal thickness and collagen synthesis and may serve as a potential autologous skin filler.


Asunto(s)
Rellenos Dérmicos , Envejecimiento de la Piel , Tejido Adiposo , Animales , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Desnudos
3.
Aesthet Surg J ; 42(5): NP337-NP350, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36413201

RESUMEN

BACKGROUND: Skin filler is an option for treating skin aging and wrinkles; however, currently used fillers are limited by poor biocompatibility, rapid degradation, and possible hypersensitivity reactions. Autologous adipose tissue-derived products have been recognized as promising options for skin rejuvenation. OBJECTIVES: This study aimed to develop a novel adipose-derived product for skin filling. METHODS: Adipose collagen fragment (ACF) was prepared through pulverization, filtration, and centrifugation. The macrography, structure, types of collagen, and cell viability of ACF were evaluated by immunostaining, western blotting, and cell culture assays. ACF, nanofat, and phosphate-buffered saline (9 spots/side, 0.01 mL/spot) were intradermally injected in the dorsal skin of 36 female BALB/c nude mice; the skin filling capacity and the collagen remodeling process were then investigated. Twenty-one female patients with fine rhytides in the infraorbital areas were enrolled and received clinical applications of ACF treatment. Therapeutic effects and patients' satisfaction scores were recorded. RESULTS: The mean [standard deviation] yield of ACF from 50 mL of Coleman fat was 4.91 [0.25] mL. ACF contained nonviable cells and high levels of collagen I, collagen IV, and laminin. Fibroblasts and procollagen significantly increased in ACF and ACF-treated dermis (P < 0.05). Overall, 85.7% of patients were satisfied with the therapy results, and no infections, injection site nodules, or other unwanted side effects were observed. CONCLUSIONS: ACF significantly improved dermal thickness and collagen synthesis and may serve as a potential autologous skin filler.


Asunto(s)
Rellenos Dérmicos , Ratones , Animales , Femenino , Ratones Desnudos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Tejido Adiposo
4.
Front Bioeng Biotechnol ; 11: 1270618, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854882

RESUMEN

Dermal white adipocytes are closely associated with skin homeostasis and wound healing. However, it has not been fully investigated whether adipose-derived products improve wound healing. Here, we obtained adipose acellular matrix (AAM) and adipose-derived growth factors (ADGFs) from human adipose tissue and fabricated an ADGF-loaded AAM via surface modification with heparin. The product, HEP-ADGF-AAM, contained an adipose-derived scaffold and released ADGFs in a controlled fashion. To test its efficacy in promoting wound healing, mice with full thickness wound received three different treatments: HEP-ADGF-AAM, AAM and ADM. Control mice received no further treatments. Among these treatments, HEP-ADGF-AAM best improved wound healing. It induced adipogenesis in situ after in vivo implantation and provided an adipogenic microenvironment for wounds by releasing ADGFs. HEP-ADGF-AAM not only induced adipocyte regeneration, but also enhanced fibroblast migration, promoted vessel formation, accelerated wound closure, and enhanced wound epithelialization. Moreover, there was a close interaction between HEP-ADGF-AAM and the wound bed, and collagen was turned over in HEP-ADGF-AAM. These results show that HEP-ADGF-AAM might substantially improve re-epithelialization, angiogenesis, and skin appendage regeneration, and is thus a promising therapeutic biomaterial for skin wound healing.

6.
Front Cell Dev Biol ; 9: 722427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631708

RESUMEN

Ultraviolet A (UVA) radiation is the major contributor to skin photoaging, associated with increased collagen degradation and reactive oxygen species (ROS) expression. Adipokines have been proven as promising therapeutic agents for skin photoaging. However, adipokine therapy is generally limited by the short in vivo release duration and biological instability. Therefore, developing a treatment that provides a sustained release of adipokines and enhanced therapeutic effects is desirable. In this study, we developed a novel mechanical processing technique to extract adipose tissue-derived ECM components, named the "adipose collagen fragment" (ACF). The physical characterization, injectability, collagen components, residual DNA/RNA and adipokine release pattern of ACF were identified in vitro. L929 cells were treated with ACF or phosphate-buffered saline for 24 h after UVA irradiation in vitro. The expression of senescence-associated xß-galactosidase (SA-ß-gal), ROS and antioxidase were investigated. Then, we evaluated its therapeutic efficacy by injecting ACF and phosphate-buffered saline, as a control, into the dermis of photoaging nude mice and harvesting skin samples at weeks 1, 2, and 4 after treatment for assessment. The content of adipokines released from ACF was identified in vivo. The collagen synthesis and collagen degradation in ACF implants were evaluated by immune staining. Dermal thickness, fibroblast expression, collagen synthesis, ROS level, antioxidase expression, capillary density, and apoptotic cell number were evaluated by histological assessment, immune staining, and polymerase chain reaction in the skin samples. We demonstrated that ACF is the concentrated adipose extracellular matrix collagen fragment without viable cells and can be injected through fine needles. The lower expression of SA-ß-gal, ROS and higher expression of antioxidase were observed in the ACF-treated group. ACF undergoes collagen degradation and promotes neocollagen synthesis in ACF implants. Meanwhile, ACF serves as a sustained-release system of adipokines and exhibits a significantly higher therapeutic effect on mouse skin photoaging by enhancing angiogenesis, antioxidant abilities, antiapoptotic activities, and collagen synthesis through sustainedly releasing adipokines. To sum up, ACF is an adipokines-enriched, sustained-release extracellular matrix collagen scaffold that can prevent UVA-induced skin photoaging in mice. ACF may serve as a novel autologous skin filler for skin rejuvenation applications in the clinic.

7.
Mater Today Bio ; 12: 100161, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34870140

RESUMEN

Acellular adipose matrix (AAM) has emerged as an important biomaterial for adipose tissue regeneration. Current decellularization methods damage the bioactive components of the extracellular matrix (ECM), and the residual immunogenic antigens may induce adverse immune responses. Here, we adopted a modified decellularization method which can protect more bioactive components with less immune reaction by methoxy polyethylene glycol (mPEG). Then, we determined the adipogenic mechanisms of mPEG-modified AAM after xenogeneic transplantation. AAM transplantation caused significantly lesser adipogenesis in the wild-type group than in the immune-deficient group. The mPEG-modified AAM showed significantly lower immunogenicity and higher adipogenesis than the AAM alone after xenogeneic transplantation. Furthermore, mPEG modification increased regulatory T (Treg) cell numbers in the AAM grafts, which in turn enhanced the M2/M1 macrophage ratio by secreting IL-10, IL-13, and TGF-ß1. These findings suggest that mPEG modification effectively reduces the immunogenicity of xenogeneic AAM and promotes adipogenesis in the AAM grafts. Hence, mPEG-modified AAM can serve as an ideal biomaterial for xenogeneic adipose tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA