Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Proteome Res ; 18(5): 1958-1969, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30990047

RESUMEN

Sea buckthorn ( Hippophae L.) is an economically important shrub or small tree distributed in Eurasia. Most of its well-recognized medicinal and nutraceutical products are derived from its berry oil, which is rich in monounsaturated omega-7 (C16:1) fatty acid and polyunsaturated omega-6 (C18:2) and omega-3 (C18:3) fatty acids. In this study, tandem mass tags (TMT)-based quantitative analysis was used to investigate protein profiles of lipid metabolism in sea buckthorn berries harvested 30, 50, and 70 days after flowering. In total, 8626 proteins were identified, 6170 of which were quantified. Deep analysis results for the proteins identified and related pathways revealed initial fatty acid accumulation during whole-berry development. The abundance of most key enzymes involved in fatty acid and triacylglycerol (TAG) biosynthesis peaked at 50 days after flowering, but TAG synthesis through the PDAT (phospholipid: diacylglycerol acyltransferase) pathway mostly occurred early in berry development. In addition, the patterns of proteins involved in lipid metabolism were confirmed by combined quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and parallel reaction monitoring analyses. Our data on the proteomic spectrum of sea buckthorn berries provide a scientific basic for understanding lipid metabolism and related pathways in the developing berries.


Asunto(s)
Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hippophae/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de Plantas/genética , Proteómica/métodos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/clasificación , Ácidos Grasos Monoinsaturados/aislamiento & purificación , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/clasificación , Ácidos Grasos Omega-3/aislamiento & purificación , Ácidos Grasos Omega-6/química , Ácidos Grasos Omega-6/clasificación , Ácidos Grasos Omega-6/aislamiento & purificación , Frutas/química , Frutas/genética , Frutas/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hippophae/química , Hippophae/genética , Hippophae/crecimiento & desarrollo , Anotación de Secuencia Molecular , Aceites de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triglicéridos/química , Triglicéridos/aislamiento & purificación
2.
Crit Rev Biotechnol ; 33(2): 126-44, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22676076

RESUMEN

Sea buckthorn is a berry crop with multiple uses. The berries are highly appreciated for their unique taste but are also very rich in bioactive compounds with powerful nutritional and medicinal values. In addition, the plants grow well under adverse conditions, and are often used to fight soil erosion. Utilization of sea buckthorn has therefore increased around the world but serious problems have, nevertheless, been encountered due to drought, salinity, diseases and insect pests. This review covers important aspects of sea buckthorn research, such as heritable and environmentally induced variation in biochemical compounds, causes and effects of the devastating dried-shrink disease, susceptibility to insect pests, methods for conventional breeding, and the utilization of DNA markers for taxonomical and population genetic analyses, and for investigating the inheritance of quality and resistance traits. We also present possibilities to implement innovative biotechnological breeding methods, especially metabolite profiling and MAS/GRC-based markers, for fast and efficient development of elite genotypes with specific nutritional- and health-related bioactive compounds and strong resistance to biotic and abiotic stress.


Asunto(s)
Adaptación Biológica , Productos Agrícolas/fisiología , Hippophae/fisiología , Enfermedades de las Plantas/prevención & control , Productos Agrícolas/genética , Resistencia a la Enfermedad , Hippophae/genética
3.
Physiol Plant ; 147(3): 352-68, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22697433

RESUMEN

Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (F(v) /F(m) ), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs). Cd induced an oxidative stress in relation to an increase in O(2) (•-) and H(2) O(2) concentration and lead to a decrease in endogenous glutathione (GSH) and α-tocopherol in the leaves. Cd not only increased leaf zeatin and zeatin riboside concentration but also increased the senescing compounds 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA). Salinity reduced Cd accumulation already after 1 week of stress but was unable to restore shoot growth and thus did not induce any dilution effect. Salinity delayed the Cd-induced leaf senescence: NaCl reduced the deleterious impact of Cd on photosynthesis apparatus through an improvement of F(v) /F(m) , Y(II) and ETR. Salt reduced oxidative stress in Cd-treated plants through an increase in GSH, α-tocopherol and ascorbic acid synthesis and an increase in glutathione reductase (EC 1.6.4.2) activity. Additional salt reduced ACC and ABA accumulation in Cd+NaCl-treated leaves comparing to Cd alone. It is concluded that salinity affords efficient protection against Cd to the halophyte species K. virginica, in relation to an improved management of oxidative stress and hormonal status.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/farmacología , Malvaceae/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Malvaceae/efectos de los fármacos , Malvaceae/enzimología , Malvaceae/crecimiento & desarrollo , Estrés Oxidativo , Fotosíntesis , Complejo de Proteína del Fotosistema II , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Salinidad , Plantas Tolerantes a la Sal , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Cloruro de Sodio/farmacología , Humedales , alfa-Tocoferol/metabolismo
4.
Crit Rev Biotechnol ; 32(1): 1-21, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21699437

RESUMEN

Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect is provided on the challenges of enhancing carbon assimilation of C3 plants using transgenic engineering in the face of global warming, and the trends of the most promising approaches to improving the photosynthetic performance of C3 plants.


Asunto(s)
Carbono/metabolismo , Ingeniería Genética/métodos , Fotosíntesis , Plantas Modificadas Genéticamente/metabolismo , Plantas/metabolismo , Calentamiento Global , Plantas/genética , Plantas Modificadas Genéticamente/genética
5.
Crit Rev Biotechnol ; 31(2): 153-69, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21058928

RESUMEN

Breeders have long been interested in understanding the biological function and mechanism of xero-halophytes and their ability for growth in drought-stricken and salinized environments. However, the mechanisms in response to stress have been difficult to unravel because their defenses require regulatory changes to the activation of multiple genes and pathways. Metabolomics is becoming a key tool in comprehensively understanding the cellular response to abiotic stress and represents an important addition to the tools currently employed in genomics-assisted selection for plant improvement. In this review, we highlight the applications of plant metabolomics in characterizing metabolic responses to salt and drought stress, and identifying metabolic quantitative trait loci (QTLs). We also discuss the potential of metabolomics as a tool to unravel stress response mechanisms, and as a viable option for the biotechnological improvement of xero-halophytes when no other genetic information such as linkage maps and QTLs are available, by combining with germplasm-regression-combined marker-trait association identification.


Asunto(s)
Sequías , Metabolómica/métodos , Plantas Tolerantes a la Sal/genética , Sales (Química)/metabolismo , Estrés Fisiológico , Adaptación Fisiológica , Biotecnología/métodos , Cruzamiento , Genómica , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo
6.
Crit Rev Biotechnol ; 30(3): 192-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20210691

RESUMEN

In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.


Asunto(s)
Cruzamiento , Estudios de Asociación Genética , Marcadores Genéticos/genética , Plantas/genética , Sitios de Carácter Cuantitativo/genética , Estrés Fisiológico/genética , Biotecnología , Sequías , Análisis de Regresión
7.
Genome ; 53(6): 447-57, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20555434

RESUMEN

Sea buckthorn (Hippophae L.) is a woody, outcrossing dioecious pioneer plant, being widely planted as a new berry crop with rich nutritional and medicinal compounds. This long-juvenile and long-lived woody plant can be more difficult to cultivate than other crop plants. Dried-shrink disease (DSD) is a dangerous pathogen that destroys sea buckthorn and halts commercial production. We estimated variability of sequence-related amplified polymorphism (SRAP) markers in 77 accessions of 22 sea buckthorn cultivars to seek markers associated with DSD resistance and help to identify potential breeding cultivars. Seventeen SRAP primer combinations generated 289 bands, with a mean of 17 bands per primer combination. At a Dice coefficient of 0.852, the dendrogram generated with 191 polymorphic bands clustered 73 accessions of Hippophae rhamnoides into 2 groups and 4 accessions of Hippophae salicifolia into 1 group. Eleven SRAP markers (Me1-Em3(600), Me1-Em1(680), Me2-Em1(650), Me2-Em1(950), Me3-Em6(1300), Me2-Em6(320), Me2-Em6(400), Me1-Em2(600), Me1-Em1(1200), Me1-Em1(1700), Me2-Em2(250)) were significantly correlated with DSD resistance (P < 0.001). These markers provide a viable option for breeding programs that select lineages with DSD resistance, especially when no other genetic information, such as linkage maps and quantitative trait loci, are available.


Asunto(s)
Marcadores Genéticos/genética , Hippophae/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/genética , Análisis por Conglomerados , ADN de Plantas/genética , Genoma de Planta/genética , Hippophae/clasificación , Inmunidad Innata/genética , Filogenia , Hojas de la Planta/genética , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Especificidad de la Especie
8.
J Plant Physiol ; 167(5): 382-92, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19962213

RESUMEN

Mucilage is thought to play a role in salinity tolerance in certain halophytic species by regulating water ascent and ion transport. The localization and composition of mucilage in the halophyte Kosteletzkya virginica was therefore investigated. Plants were grown in a hydroponic system in the presence or absence of 100mM NaCl and regularly harvested for growth parameter assessment and mucilage analysis with the gas liquid chromatography method. NaCl treatment stimulated shoot growth and biomass accumulation, had little effect on shoot and root water content, and reduced leaf water potential (Psi(w)), osmotic potential (Psi(s)) as well as stomatal conductance (g(s)). Mucilage increased in shoot, stems and roots in response to salt stress. Furthermore, changes were also observed in neutral monosaccharide components. Levels of rhamnose and uronic acid increased with salinity. Staining with a 0.5% alcian blue solution revealed the presence of mucopolyssacharides in xylem vessels and salt-induced mucilaginous precipitates on the leaf abaxial surface. Determination of ion concentrations showed that a significant increase of Na(+) and a decrease of K(+) and Ca(2+) simultaneously occurred in tissues and in mucilage under salt stress. Considering the high proportion of rhamnose and uronic acid in stem mucilage, we suggest that the pectic polysaccharide could be involved in Na(+) fixation, though only a minor fraction of accumulated sodium appeared to be firmly bound to mucilage.


Asunto(s)
Adhesivos/análisis , Malvaceae/fisiología , Polisacáridos/análisis , Plantas Tolerantes a la Sal/fisiología , Adhesivos/metabolismo , Malvaceae/química , Presión Osmótica , Hojas de la Planta/química , Hojas de la Planta/fisiología , Raíces de Plantas/química , Raíces de Plantas/fisiología , Brotes de la Planta/química , Brotes de la Planta/fisiología , Tallos de la Planta/química , Tallos de la Planta/fisiología , Polisacáridos/metabolismo , Polisacáridos/fisiología , Ramnosa/análisis , Ramnosa/metabolismo , Salinidad , Plantas Tolerantes a la Sal/química , Estrés Fisiológico/fisiología , Ácidos Urónicos/análisis , Ácidos Urónicos/metabolismo , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA