RESUMEN
BACKGROUND: This study was designed to develop an innovative classification and guidance system for renal hilar tumors and to assess the safety and effectiveness of robot-assisted partial nephrectomy (RAPN) for managing such tumors. METHODS: A total of 179 patients undergoing RAPN for renal hilar tumors were retrospectively reviewed. A novel classification system with surgical techniques was introduced and the perioperative features, tumor characteristics, and the efficacy and safety of RAPN were compared within subgroups. RESULTS: We classified the tumors according to our novel system as follows: 131 Type I, 35 Type II, and 13 Type III. However, Type III had higher median R.E.N.A.L., PADUA, and ROADS scores compared with the others (all p < 0.001), indicating increased operative complexity and higher estimated blood loss [180.00 (115.00-215.00) ml]. Operative outcomes revealed significant disparities between Type III and the others, with longer operative times [165.00 (145.00-200.50) min], warm ischemia times [24.00 (21.50-30.50) min], tumor resection times [13.00 (12.00-15.50) min], and incision closure times [22.00 (20.00-23.50) min] (all p < 0.005). Postoperative outcomes also showed significant differences, with longer durations of drain removal (77.08 ± 18.16 h) and hospitalization for Type III [5.00 (5.00-6.00) d] (all p < 0.05). Additionally, Type I had a larger tumor diameter than the others (p = 0.009) and pT stage differed significantly between the subtypes (p = 0.020). CONCLUSIONS: The novel renal hilar tumor classification system is capable of differentiating the surgical difficulty of RAPN and further offers personalized surgical steps tailored to each specific classification. It provides a meaningful tool for clinical practice.
Asunto(s)
Neoplasias Renales , Nefrectomía , Procedimientos Quirúrgicos Robotizados , Humanos , Neoplasias Renales/cirugía , Neoplasias Renales/clasificación , Neoplasias Renales/patología , Femenino , Masculino , Nefrectomía/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Procedimientos Quirúrgicos Robotizados/métodos , Estudios de Seguimiento , Anciano , Tempo Operativo , Pronóstico , Complicaciones Posoperatorias/clasificación , Complicaciones Posoperatorias/etiología , Tiempo de Internación/estadística & datos numéricos , Adulto , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/clasificación , Isquemia Tibia , Pérdida de Sangre Quirúrgica/estadística & datos numéricosRESUMEN
OBJECTIVES: Accurate preoperative prediction of adverse pathology is crucial for treatment planning of renal cell carcinoma (RCC). Previous studies have emphasized the potential of prostate-specific membrane antigen positron emission tomography / computed tomography (PSMA PET/CT) in differentiating between benign and malignant localized renal tumors. However, there is a scarcity of case reports elucidating the identification of aggressive pathological features using PET/CT. Our study was designed to prospectively compare the diagnostic value of enhanced CT, 68Ga-PSMA-11 and 18F-fluorodeoxyglucose (18F-FDG) PET/CT in clear-cell renal cell carcinoma (ccRCC) with necrosis or sarcomatoid or rhabdoid differentiation. MATERIALS AND METHODS: A prospective case series of patients with a newly diagnosed renal mass who underwent enhanced CT, 68Ga-PSMA-11 and 18F-FDG PET/CT within 30 days prior to nephrectomy was included. Complete preoperative and postoperative clinicopathological data were recorded. Patients who received neoadjuvant targeted therapy, declined enhanced CT or PET/CT scanning, refused surgical treatment or had non-ccRCC pathological indications were excluded. Radiological parameters were compared within subgroups of pathological characteristics. Bonferroni corrections were used to adjust for multiple testing and statistical significance was set at a p-value less than 0.017. RESULTS: Seventy-two patients were available for the final analysis. Enhanced CT demonstrated poor performance in identifying necrosis, sarcomatoid or rhabdoid differentiation and adverse pathology (all P > 0.05). The maximum standardized uptake value (SUVmax) of 68Ga-PSMA-11 PET/CT was more effective than 18F-FDG PET/CT in identifying tumor necrosis and adverse pathology, with an area under the curve (AUC) of 0.85 (cutoff value=25.26, p<0.001; Delong test z=2.709, p=0.007) for tumor necrosis and AUC of 0.90 (cutoff value=25.26, p<0.001; Delong test z=3.433, p<0.001) for adverse pathology. However, no significant statistical difference was found between 68Ga-PSMA-11 and 18F-FDG PET/CT in predicting sarcomatoid or rhabdoid feature (AUC of 0.91 vs.0.75, Delong test z=1.998, p=0.046). Subgroup analyses based on age, sex, tumor location, maximal diameter, stage and WHO/ISUP grade demonstrated that 68Ga-PSMA-11 PET/CT SUVmax had a significant predictive value for adverse pathology. Enhanced CT value and SUVmax demonstrated strong reliability [intraclass correlation coefficient (ICC) > 0.80], indicating a robust correlation. CONCLUSIONS: 68Ga-PSMA-11 PET/CT demonstrates distinct advantages in identifying aggressive pathological features of primary ccRCC when compared to enhanced CT and 18F-FDG PET/CT. Further research and assessment are warranted to fully establish the clinical utility of 68Ga-PSMA-11 PET/CT in ccRCC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/patología , Estudios Prospectivos , Reproducibilidad de los Resultados , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Tomografía Computarizada por Rayos X , NecrosisRESUMEN
PURPOSE: The aim of this study was to assess the potential application of a radiomics features-based nomogram for predicting therapeutic responses to neoadjuvant chemohormonal therapy (NCHT) in patients with high-risk non-metastatic prostate cancer (PCa). METHODS: Clinicopathologic information was retrospectively collected from 162 patients with high-risk non-metastatic PCa receiving NCHT and radical prostatectomy at our center. The postoperative pathological findings were used as the gold standard for evaluating the efficacy of NCHT. The least absolute shrinkage and selection operator (LASSO) was conducted to develop radiomics signature. Multivariate logistic regression analyses were conducted to identify the predictors of a positive pathological response to NCHT, and a nomogram was constructed based on these predictors. RESULTS: Sixty-three patients (38.89%) experienced positive pathological response to NCHT. Receiver operating characteristic analyses showed that the area under the curve (AUC) of periprostatic fat (PPF) radiomics signature was 0.835 (95% CI, 0.754-0.898), while the AUC of intratumoral radiomics signature was 0.822 (95% CI, 0.739-0.888). Multivariate logistic regression analysis revealed that PSA level, PPF radiomics signature and intratumoral radiomics signature were independent predictors of positive pathological response. A nomogram based on these three predictors was constructed. The AUC was 0.908 (95% CI, 0.839-0.954). The Hosmer-Lemeshow goodness-of-fit test showed that the nomogram was well calibrated. Decision curve analysis revealed the favorable clinical practicability of the nomogram. The nomogram was successfully validated in the validation cohort. Kaplan-Meier analyses showed that nomogram and positive pathological response were significantly related with survival of PCa. CONCLUSION: The radiomics-clinical nomogram based on mpMRI radiomics features exhibited superior predictive ability for positive pathological response to NCHT in high-risk non-metastatic PCa.
Asunto(s)
Imagen por Resonancia Magnética , Terapia Neoadyuvante , Nomogramas , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Resultado del Tratamiento , Curva ROC , RadiómicaRESUMEN
Aberrant activation of the epithelial-mesenchymal transition (EMT) pathway drives the development of solid tumors, which is precisely regulated by core EMT-related transcription factors, including Twist1. However, the expression pattern and regulatory mechanism of Twist1 in the progression of bladder cancer is still unclear. In this study, we explore the role of Twist1 in the progression of bladder cancer. We discovered that the EMT regulon Twist1 protein, but not Twist1 mRNA, is overexpressed in bladder cancer samples using RT-qPCR, western blot and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation (Co-IP) coupled with liquid chromatography and tandem mass spectrometry identified USP5 as a binding partner of Twist1, and the binding of Twist1 to ubiquitin-specific protease 5 (USP5) stabilizes Twist through its deubiquitinase activity to activate the EMT. Further studies found that USP5 depletion reduces cell proliferation, invasion and the EMT in bladder cancer cells, and ectopic expression of Twist1 rescues the adverse effects of USP5 loss on cell invasion and the EMT. A xenograft tumor model was used to reconfirmed the inhibitor effect of silencing USP5 expression on tumorigenesis in vivo. In addition, USP5 protein levels are significantly elevated and positively associated with Twist1 levels in clinical bladder cancer samples. Collectively, our study revealed that USP5-Twist1 axis is a novel regulatory mechanism driving bladder cancer progression and that approaches targeting USP5 may become a promising cancer treatment strategy.
Asunto(s)
Proteína 1 Relacionada con Twist , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Proteína 1 Relacionada con Twist/genética , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Proteasas Ubiquitina-EspecíficasRESUMEN
PURPOSE: The purpose of this study was to explore the semantic computed tomography (CT) features associated with BRCA1-associated protein 1 (BAP1) and/or tumor protein p53 (TP53) mutation in clear cell renal cell carcinoma (ccRCC). METHODS AND MATERIALS: Clinical characteristics and gene mutation information of 336 ccRCC patients were retrieved from The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma database (TCGA-KIRC). Kaplan-Meier analysis was performed to examine prognosis by gene mutation. The CT imaging data and gene mutation information of 156 ccRCC patients treated between January 2019 and January 2021 (the training cohort) were retrospectively analyzed. The CT imaging information and gene mutation data of 123 patients with ccRCC were downloaded from The Cancer Imaging Archive and The Cancer Genome Atlas database (the external validation cohort). Univariate Chi-square test and multivariate binary logistic regression analysis were performed to determine predictors of gene mutation; a nomogram was developed using these predictors. Receiver operating characteristic curve analysis and the Hosmer-Lemeshow test were performed to evaluate the performance of the nomogram. RESULTS: Kaplan-Meier analysis showed that BAP1 and/or TP53 mutation was significantly correlated with worse survival outcome. Multivariate binary logistic regression analysis indicated ill-defined margin (P = .001), spiculated margin (P = .018), renal vein invasion (P = .002), and renal pelvis invasion (P = .001) were independent predictors of BAP1 and/or TP53 mutation. A nomogram containing these 4 semantic CT features was constructed; the area under the receiver operating characteristic curves was 0.872 (95% CI, 0.809-0.920). The Hosmer-Lemeshow test showed acceptable goodness-of-fit for the nomogram (X2 = 1.194, P = .742). The nomogram was validated in the validation cohort; it showed good accuracy (area under the receiving operating characteristic curve = 0.819, 95% CI, 0.740-0.883) and was well calibrated (X2 = 3.934, P = .559). CONCLUSIONS: Semantic CT features are a potential and promising method for predicting BAP1 and/or TP53 mutation status in ccRCC patients.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/genética , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/genética , Estudios Retrospectivos , Genes p53 , Semántica , Tomografía Computarizada por Rayos X/métodos , Mutación , Proteína BRCA1/genéticaRESUMEN
ABSTRACT Objectives: Accurate preoperative prediction of adverse pathology is crucial for treatment planning of renal cell carcinoma (RCC). Previous studies have emphasized the potential of prostate-specific membrane antigen positron emission tomography / computed tomography (PSMA PET/CT) in differentiating between benign and malignant localized renal tumors. However, there is a scarcity of case reports elucidating the identification of aggressive pathological features using PET/CT. Our study was designed to prospectively compare the diagnostic value of enhanced CT, 68Ga-PSMA-11 and 18F-fluorodeoxyglucose (18F-FDG) PET/CT in clear-cell renal cell carcinoma (ccRCC) with necrosis or sarcomatoid or rhabdoid differentiation. Materials and Methods: A prospective case series of patients with a newly diagnosed renal mass who underwent enhanced CT, 68Ga-PSMA-11 and 18F-FDG PET/CT within 30 days prior to nephrectomy was included. Complete preoperative and postoperative clinicopathological data were recorded. Patients who received neoadjuvant targeted therapy, declined enhanced CT or PET/CT scanning, refused surgical treatment or had non-ccRCC pathological indications were excluded. Radiological parameters were compared within subgroups of pathological characteristics. Bonferroni corrections were used to adjust for multiple testing and statistical significance was set at a p-value less than 0.017. Results: Seventy-two patients were available for the final analysis. Enhanced CT demonstrated poor performance in identifying necrosis, sarcomatoid or rhabdoid differentiation and adverse pathology (all P > 0.05). The maximum standardized uptake value (SUVmax) of 68Ga-PSMA-11 PET/CT was more effective than 18F-FDG PET/CT in identifying tumor necrosis and adverse pathology, with an area under the curve (AUC) of 0.85 (cutoff value=25.26, p<0.001; Delong test z=2.709, p=0.007) for tumor necrosis and AUC of 0.90 (cutoff value=25.26, p<0.001; Delong test z=3.433, p<0.001) for adverse pathology. However, no significant statistical difference was found between 68Ga-PSMA-11 and 18F-FDG PET/CT in predicting sarcomatoid or rhabdoid feature (AUC of 0.91 vs.0.75, Delong test z=1.998, p=0.046). Subgroup analyses based on age, sex, tumor location, maximal diameter, stage and WHO/ISUP grade demonstrated that 68Ga-PSMA-11 PET/CT SUVmax had a significant predictive value for adverse pathology. Enhanced CT value and SUVmax demonstrated strong reliability [intraclass correlation coefficient (ICC) > 0.80], indicating a robust correlation. Conclusions: 68Ga-PSMA-11 PET/CT demonstrates distinct advantages in identifying aggressive pathological features of primary ccRCC when compared to enhanced CT and 18F-FDG PET/CT. Further research and assessment are warranted to fully establish the clinical utility of 68Ga-PSMA-11 PET/CT in ccRCC.