Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38758056

RESUMEN

OBJECTIVE: Identification of biomarkers of cognitive recovery after traumatic brain injury (TBI) will inform care and improve outcomes. This study assessed the utility of neurofilament (NF-L and pNF-H), a marker of neuronal injury, informing cognitive performance following moderate-to-severe TBI (msTBI). SETTING: Level 1 trauma center and outpatient via postdischarge follow-up. PARTICIPANTS: N = 94. Inclusion criteria: Glasgow Coma Scale score less than 13 or 13-15 with clinical evidence of moderate-to-severe injury traumatic brain injury on clinical imaging. Exclusion criteria: neurodegenerative condition, brain death within 3 days after injury. DESIGN: Prospective observational study. Blood samples were collected at several time points post-injury. Cognitive testing was completed at 6 months post-injury. MAIN MEASURES: Serum NF-L (Human Neurology 4-Plex B) pNF-H (SR-X) as measured by SIMOA Quanterix assay. Divided into 3 categorical time points at days post-injury (DPI): 0-15 DPI, 16-90 DPI, and >90 DPI. Cognitive composite comprised executive functioning measures derived from 3 standardized neuropsychological tests (eg, Delis-Kaplan Executive Function System: Verbal Fluency, California Verbal Learning Test, Second Edition, Wechsler Adult Intelligence Scale, Third Edition). RESULTS: pNF-H at 16-90 DPI was associated with cognitive outcomes including a cognitive-executive composite score at 6 months (ß = -.430, t34 = -3.190, P = .003). CONCLUSIONS: Results suggest that "subacute" elevation of serum pNF-H levels may be associated with protracted/poor cognitive recovery from msTBI and may be a target for intervention. Interpretation is limited by small sample size and including only those who were able to complete cognitive testing.

2.
J Neurotrauma ; 41(1-2): 73-90, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489296

RESUMEN

In patients with traumatic brain injury (TBI), serum biomarkers may have utility in assessing the evolution of secondary brain injury. A panel of nine brain-injury- associated biomarkers was measured in archived serum samples over 10 days post-injury from 100 patients with moderate-severe TBI. Among the biomarkers evaluated, serum glial fibrillary acidic protein (GFAP) had the strongest associations with summary measures of acute pathophysiology, including intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain tissue pO2 (PbtO2). Group based trajectory (TRAJ) analysis was used to identify three distinct GFAP subgroups. The low TRAJ group (n = 23) had peak levels of 9.4 + 1.2 ng/mL that declined rapidly. The middle TRAJ group (n = 48) had higher peak values (31.5 + 5.0 ng/mL) and a slower decline over time. The high TRAJ group (n = 26) had very high, sustained peak values (59.6 + 12.5 ng/mL) that even rose among some patients over 10 days. Patients in the high TRAJ group had significantly higher mortality rate than patients in low and middle TRAJ groups (26.9% vs. 7.0%, p = 0.028). The frequency of poor neurological outcome (Glasgow Outcome Score Extended [GOS-E] 1-4) was 88.5% in the high TRAJ group, 54.2% in the middle TRAJ group, and 30.4% in the low TRAJ group (p < 0.001). ICP was highest in the high TRAJ group (median 17.6 mm Hg), compared with 14.4 mmHg in the low and 15.9 mm Hg in middle TRAJ groups (p = 0.002). High TRAJ patients spent the longest time with ICP >25 mm Hg, median 23 h, compared with 2 and 6 h in the low and middle TRAJ groups (p = 0.006), and the longest time with ICP >30 mm Hg, median 5 h, compared with 0 and 1 h in the low and middle TRAJ groups, respectively (p = 0.013). High TRAJ group patients more commonly required tier 2 or 3 treatment to control ICP. The high TRAJ group had the longest duration when CPP was <50 mm Hg (p = 0.007), and PbtO2 was <10 mm Hg (p = 0.002). Logistical regression was used to study the relationship between temporal serum GFAP patterns and 6-month GOS-E. Here, the low and middle TRAJ groups were combined to form a low-risk group, and the high TRAJ group was designated the high-risk group. High TRAJ group patients had a greater chance of a poor 6-month GOS-E (p < 0.0001). When adjusting for baseline injury characteristics, GFAP TRAJ group membership remained associated with GOS-E (p = 0.003). When an intensive care unit (ICU) injury burden score, developed to quantify physiological derangements, was added to the model, GFAP TRAJ group membership remained associated with GOS-E (p = 0.014). Mediation analysis suggested that ICU burden scores were in the causal pathway between TRAJ group and 6-month mortality or GOS-E. Our results suggest that GFAP may be useful to monitor serially in moderate-severe TBI patients. Future studies in larger cohorts are needed to confirm these results.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Proteína Ácida Fibrilar de la Glía , Biomarcadores , Presión Intracraneal/fisiología
3.
J Neurotrauma ; 41(3-4): 369-392, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37725589

RESUMEN

Traumatic brain injury (TBI) can initiate progressive injury responses, which are linked to increased risk of neurodegenerative diseases known as "tauopathies." Increased post-TBI tau hyperphosphorylation has been reported in brain tissue and biofluids. Acute-to-chronic TBI total (T)-tau and phosphorylated (P)-tau temporal profiles in the cerebrospinal fluid (CSF) and serum and their relationship to global outcome is unknown. Our multi-site longitudinal study examines these concurrent profiles acutely (CSF and serum) and also characterizes the acute- to-chronic serum patterns. Serial serum and CSF samples from individuals with moderate-to-severe TBI were obtained from two cohorts (acute, subacute, and chronic samples from University of Pittsburgh [UPitt] [n = 286 unique subjects] and acute samples from Baylor College of Medicine [BCM] [n = 114 unique subjects]) and assayed for T-tau and P-tau using the Rolling Circle Amplification-Surround Optical Fiber ImmunoAssay platform. Biokinetic analyses described serum T-tau and P-tau temporal patterns. T-tau and P-tau levels are compared with those in healthy controls (n = 89 for both CSF and serum), and univariate/multivariable associations are made with global outcome, including the Disability Rating Scale (DRS) and the Glasgow Outcome Scale-Extended (GOS-E) scores at 3 and 6 months post-TBI (BCM cohort) and at 6 and 12 months post-TBI (UPitt cohort). For both the UPitt and BCM cohorts, temporal increases in median serum and CSF T-tau and P-tau levels occurred over the first 5 days post-injury, while the initial increases of P-tau:T-tau ratio plateaued by day 4 post-injury (UPitt: n = 99, BCM: n = 48). Biokinetic analyses with UPitt data showed novel findings that T-tau (n = 74) and P-tau (n = 87) reached delayed maximum levels at 4.5 and 5.1 days, while exhibiting long serum half-lives (152 and 123 days), respectively. The post-TBI rise in acute (days 2-6) serum P-tau (up to 276-fold) far outpaced that of T-tau (7.3-fold), leading to a P-tau:T-tau increase of up to 267-fold, suggesting a shift toward tau hyperphosphorylation. BCM analyses showed that days 0-6 mean CSF T-tau and P-tau levels and P-tau:T-tau ratios were associated with greater disability (DRS) (n = 48) and worse global outcome (GOS-E) (n = 48) 6 months post-injury. Days 0-6 mean serum T-tau, P-tau, and P-tau:T-tau ratio were not associated with outcome in either cohort (UPitt: n = 145 [DRS], n = 154 [GOS-E], BCM: n = 99 [DRS and GOS-E]). UPitt multivariate models showed that higher chronic (months 1-6) mean P-tau levels and P-tau:T-tau ratio, but not T-tau levels, are associated with greater disability (DRS: n = 119) and worse global outcomes (GOS-E: n = 117) 12 months post-injury. This work shows the potential importance of monitoring post-TBI T-tau and P-tau levels over time. This multi-site longitudinal study features concurrent acute TBI T-tau and P-tau profiles in CSF and serum, and also characterizes acute-to-chronic serum profiles. Longitudinal profiles, along with no temporal concordance between trajectory groups over time, imply a sustained post-TBI shift in tau phosphorylation dynamics that may favor tauopathy development chronically.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Biomarcadores , Escala de Consecuencias de Glasgow , Estudios Longitudinales
4.
J Neurotrauma ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38588256

RESUMEN

Neurofilament-light chain (NF-L) and phosphorylated neurofilament-heavy chain (pNF-H) are axonal proteins that have been reported as potential diagnostic and prognostic biomarkers in traumatic brain injury (TBI). However, detailed temporal profiles for these proteins in blood, and interrelationships in the acute and chronic time periods post-TBI have not been established. Our objectives were: 1) to characterize acute-to-chronic serum NF-L and pNF-H profiles after moderate-severe TBI, as well as acute cerebrospinal fluid (CSF) levels; 2) to evaluate CSF and serum NF-L and pNF-H associations with each other; and 3) to assess biomarker associations with global patient outcome using both the Glasgow Outcome Scale-Extended (GOS-E) and Disability Rating Scale (DRS). In this multi-cohort study, we measured serum and CSF NF-L and pNF-H levels in samples collected from two clinical cohorts (University of Pittsburgh [UPITT] and Baylor College of Medicine [BCM]) of individuals with moderate-severe TBI. The UPITT cohort includes 279 subjects from an observational cohort study; we obtained serum (n = 277 unique subjects) and CSF (n = 95 unique subjects) daily for 1 week, and serum every 2 weeks for 6 months. The BCM cohort included 103 subjects from a previous randomized clinical trial of erythropoietin and blood transfusion threshold after severe TBI, which showed no effect on neurological outcome between treatment arms; serum (n = 99 unique subjects) and CSF (n = 54 unique subjects) NF-L and pNF-H levels were measured at least daily during Days (D) 0-10 post-injury. GOS-E and DRS were assessed at 6 months (both cohorts) and 12 months (UPITT cohort only). Results show serum NF-L and pNF-H gradually rise during the first 10 days and peak at D20-30 post-injury. In the UPITT cohort, acute (D0-6) NF-L and pNF-H levels correlate within CSF and serum (Spearman r = 0.44-0.48; p < 0.05). In the UPITT cohort, acute NF-L CSF and serum levels, as well as chronic (Months [M]2-6) serum NF-L levels, were higher among individuals with unfavorable GOS-E and worse DRS at 12 months (p < 0.05, all comparisons). In the BCM cohort, higher acute serum NF-L levels were also associated with unfavorable GOS-E. Higher pNF-H serum concentrations (D0-6 and M2-6), but not CSF pNF-H, were associated with unfavorable GOS-E and worse DRS (p < 0.05, all comparisons) in the UPITT cohort. Relationships between biomarker levels and favorable outcome persisted after controlling for age, sex, and Glasgow Coma Scale. This study shows for the first time that serum levels of NF-L and pNF-H peak at D20-30 post-TBI. Serum NF-L levels, and to a lesser extent pNF-H levels, are robustly associated with global patient outcomes and disability after moderate-severe TBI. Further studies on clinical utility as prognosis and treatment-response indicators are needed.

5.
J Gen Virol ; 93(Pt 6): 1375-1383, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22323531

RESUMEN

A scrapie-positive ewe was found in a flock that had been scrapie-free for 13 years, but housed adjacent to scrapie-positive animals, separated by a wire fence. Live animal testing of the entire flock of 24 animals revealed seven more subclinical scrapie-positive ewes. We hypothesized that they may have contracted the disease from scrapie-positive rams used for breeding 4 months prior, possibly through the semen. The genotypes of the ewe flock were highly scrapie-susceptible and the rams were infected with the 'Caine' scrapie strain having a short incubation time of 4.3-14.6 months in sheep with 136/171 VQ/VQ and AQ/VQ genotypes. PrP(Sc) accumulates in a variety of tissues in addition to the central nervous system. Although transmission of prion diseases, or transmissible spongiform encephalopathies, has been achieved via peripheral organ or tissue homogenates as well as by blood transfusion, neither infectivity nor PrP(Sc) have been found in semen from scrapie-infected animals. Using serial protein misfolding cyclic amplification followed by a surround optical fibre immunoassay, we demonstrate that semen from rams infected with a short-incubation-time scrapie strain contains prion disease-associated-seeding activity that generated PrP(Sc) in sPMCA (serial protein misfolding cyclic amplification). Injection of the ovinized transgenic mouse line TgSShpPrP with semen from scrapie-infected sheep resulted in PrP(Sc)-seeding activity in clinical and, probably as a result of the low titre, non-clinical mouse brain. These results suggest that the transmissible agent, or at least the seeding activity, for sheep scrapie is present in semen. This may be a strain-specific phenomenon.


Asunto(s)
Proteínas PrPSc/análisis , Proteínas PrPSc/metabolismo , Scrapie/transmisión , Semen/química , Animales , Cruzamiento , Femenino , Genotipo , Masculino , Ratones , Ratones Transgénicos , Proteínas PrPSc/genética , Scrapie/diagnóstico , Scrapie/metabolismo , Semen/metabolismo , Ovinos , Oveja Doméstica
6.
J Virol ; 85(17): 9031-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21715495

RESUMEN

Prion diseases, also known as transmissible spongiform encephalopathies, are fatal neurodegenerative disorders. Low levels of infectious agent and limited, infrequent success of disease transmissibility and PrP(Sc) detection have been reported with urine from experimentally infected clinical cervids and rodents. We report the detection of prion disease-associated seeding activity (PASA) in urine from naturally and orally infected sheep with clinical scrapie agent and orally infected preclinical and infected white-tailed deer with clinical chronic wasting disease (CWD). This is the first report on PASA detection of PrP(Sc) from the urine of naturally or preclinical prion-diseased ovine or cervids. Detection was achieved by using the surround optical fiber immunoassay (SOFIA) to measure the products of limited serial protein misfolding cyclic amplification (sPMCA). Conversion of PrP(C) to PrP(Sc) was not influenced by the presence of poly(A) during sPMCA or by the homogeneity of the PrP genotypes between the PrP(C) source and urine donor animals. Analysis of the sPMCA-SOFIA data resembled a linear, rather than an exponential, course. Compared to uninfected animals, there was a 2- to 4-log increase of proteinase K-sensitive, light chain immunoglobulin G (IgG) fragments in scrapie-infected sheep but not in infected CWD-infected deer. The higher-than-normal range of IgG levels found in the naturally and experimentally infected clinical scrapie-infected sheep were independent of their genotypes. Although analysis of urine samples throughout the course of infection would be necessary to determine the usefulness of altered IgG levels as a disease biomarker, detection of PrP(Sc) from PASA in urine points to its potential value for antemortem diagnosis of prion diseases.


Asunto(s)
Inmunoglobulina G/análisis , Scrapie/diagnóstico , Scrapie/inmunología , Orina/química , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/inmunología , Animales , Ciervos , Inmunoensayo/métodos , Pliegue de Proteína , Scrapie/transmisión , Ovinos , Enfermedad Debilitante Crónica/transmisión
7.
Electrophoresis ; 33(24): 3631-43, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23161058

RESUMEN

Prion diseases, or transmissible spongiform encephalopathies, are progressive, fatal neurodegenerative diseases. There are both human and animal forms of the disease and all are associated with the conversion of a normal host-coded cellular prion protein (PrP(C) ) into an abnormal protease-resistant isoform (PrP(Sc) ). Although methodologies are sensitive and specific for postmortem disease diagnosis, the use of PrP(Sc) as a preclinical or general biomarker for surveillance is difficult, due to the fact that it is present in extremely small amounts in accessible tissues or body fluids such as blood, urine, saliva, and cerebrospinal fluid. Recently, amplification techniques have been developed, which have enabled increased sensitivity for PrP(Sc) detection. However, it has recently been reported that proteinase K sensitive, pathological isoforms of PrP may have a significant role in the pathogenesis of some prion diseases. Accordingly, the development of new diagnostic tests that do not rely on PrP(Sc) and proteinase K digestion is desirable. The search for biomarkers (other than PrP(Sc) ) as tools for diagnosis of prion diseases has a long history. Ideally biomarkers able to detect all transmissible spongiform encephalopathies, even at preclinical stages of infection are desirable but not yet possible due to the heterogeneity of the disease and lengthy disease progression. Recent advances in neuroproteomics have led to an overwhelming amount of information, which may offer insight on protein-protein interactions. While the amount of data obtained is impressive, the ability to relate it to the disease and validating its usefulness in diagnostic biomarker development remains a formidable challenge.


Asunto(s)
Enfermedades por Prión/metabolismo , Priones/análisis , Proteómica/métodos , Animales , Biomarcadores/análisis , Humanos , Priones/metabolismo
8.
Electrophoresis ; 33(24): 3720-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23161471

RESUMEN

A proteomic approach to study cardiovascular disease includes the examination of proteins associated with risk factors such as left ventricular hypertrophy (LVH). PrP(C) is a host-coded membrane-bound glycoprotein found in most cell types, including myocardium, and whose physiological function is uncertain. We have taken a selective proteomic approach and performed mechanistic studies to determine whether PrP(C) levels are related to left ventricular (LV) structure or function. Echocardiograms were performed at baseline in 65 mice comprising three strains of the same C57Bl/6J × 129SV genetic background but expressing different levels of PrP(C) (wild-type mice (WT), PrP(-/-) , and PrP(C) over-expressing transgenic mice (tga20)). There were no significant differences in LV mass or LV ejection fraction between the three groups. Either normal saline (n = 60) or isoproterenol (n = 55) was then administered intraperitoneally (50 mg/kg/day) for 5 days/wk for two consecutive weeks to induce LVH. Body weight decreased significantly in the PrP(-/-) group (18%). On multivariate analysis, higher LV mass index posttreatment was independently associated with the tga20 group (versus PrP(-/-) versus WT, p = 0.002) after adjusting for treatment (isoproterenol versus saline), and weight change (r(2) = 0.13 for model, p = 0.016). Therefore, PrP(C) appears unrelated to LV mass and function in the basal state. Isoproterenol causes transient enhancement of PrP(C) expression in WT mice and a more pronounced increase in tga20 mice at 2 h posttreatment. Overexpression of PrP(C) in the tga20 group may be associated with higher LV mass after a 2 wk regimen of isoproterenol.


Asunto(s)
Encéfalo/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocardio/química , Proteínas PrPC/metabolismo , Análisis de Varianza , Animales , Western Blotting , Química Encefálica , Ecocardiografía , Hipertrofia Ventricular Izquierda/inducido químicamente , Isoproterenol , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis Multivariante , Miocardio/metabolismo , Proteínas PrPC/química , Proteínas PrPC/genética
9.
J Pediatr Gastroenterol Nutr ; 52(2): 140-6, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21240009

RESUMEN

OBJECTIVES: CD40, a co-stimulatory molecule, plays a critical role in coordinating enteric inflammatory immune responses. In necrotizing enterocolitis (NEC), upregulation of IL-10, a CD40-modulated cytokine, has been described, but the role of the IL-10 receptor (IL-10Rß), CD40, and its ligand CD40L in disease pathogenesis is unknown. The study herein investigates ileal expression of CD40, CD40L, and IL-10R in a rat model of NEC. SUBJECTS AND METHODS: NEC was induced in newborn rats using established methods of formula feeding, asphyxia, and cold stress. Expression of CD40, CD40L, IL-10Rß, and other proinflammatory molecules, including Toll-like receptor-4 (TLR-4) and IL-18, was assessed by immunoblotting. Tissue infiltration by macrophages, monocytes, and T cells was examined by confocal immunohistochemistry. RESULTS: Ileum from rat pups with NEC showed increased expression of TLR-4, IL-18, and IL-10Rß. Sections from both NEC and control pups demonstrated preservation of ileal cells expressing CD40/CD40L. The distal ileum of controls expressed both CD40 and CD40L; conversely, neither molecule was detected in ileal tissue from NEC pups. Additional studies showed that treatment with epidermal growth factor (EGF), previously shown to ameliorate the severity of NEC in an animal model, did not restore CD40 expression. CONCLUSIONS: Ileal cytokine dysregulation, manifested by decreased CD40/CD40L and increased IL-10Rß expression, may be involved in the pathogenesis of NEC. Dampened CD40 signaling may be related to enhanced IL-10 expression and a suppressed T-cell response to injury. We speculate that augmenting CD40-CD40L interactions may achieve a protective effect in this NEC model.


Asunto(s)
Antígenos CD40/inmunología , Enterocolitis Necrotizante/inmunología , Íleon/inmunología , Inflamación/inmunología , Subunidad beta del Receptor de Interleucina-10/inmunología , Animales , Western Blotting , Antígenos CD40/efectos de los fármacos , Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Enterocolitis Necrotizante/etiología , Enterocolitis Necrotizante/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Íleon/metabolismo , Íleon/patología , Subunidad beta del Receptor de Interleucina-10/efectos de los fármacos , Subunidad beta del Receptor de Interleucina-10/metabolismo , Interleucina-18/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Animales , Monocitos/inmunología , Monocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptor Toll-Like 4/metabolismo
10.
Biomark Med ; 15(18): 1721-1732, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34674546

RESUMEN

Aim: There is a critical need to validate biofluid-based biomarkers as diagnostic and drug development tools for traumatic brain injury (TBI). As part of the TBI Endpoints Development Initiative, we identified four potentially predictive and pharmacodynamic biomarkers for TBI: astroglial markers GFAP and S100B and the neuronal markers UCH-L1 and Tau. Materials & methods: Several commonly used platforms for these four biomarkers were identified and compared on analytic performance and ability to detect gold standard recombinant protein antigens and to pool control versus TBI cerebrospinal fluid (CSF). Results: For each marker, only some assay formats could differentiate TBI CSF from the control CSF. Also, different assays for the same biomarker reported divergent biomarker values for the same biosamples. Conclusion: Due to the variability of TBI marker assay in performance and reported values, standardization strategies are recommended when comparing reported biomarker levels across assay platforms.


Lay abstract Traumatic brain injury (TBI) is a leading cause of mortality and morbidity around the world. There is a critical need to validate biofluid-based biomarker tests as diagnostic and drug development tools. For this study, we focused on four brain-derived proteins called GFAP, S100B, UCH-L1 and Tau. To measure these biomarker proteins in human biofluid, one relies on either commercial or home-brew assays. Here, we attempted to compare the performance of 2­4 assay formats for each biomarker. We compared their assay sensitivity, ability to detect 'gold standard' protein analyte we procured, as well as the ability to differentiated pooled TBI cerebrospinal fluid from healthy control cerebrospinal fluid. We found that there are high variabilities among TBI marker assays in assay performance, reported biomarker values and ability to differentiate TBI versus control biofluid. Thus, a standardization strategy is needed when comparing reported biomarker levels across assay platforms.


Asunto(s)
Bioensayo/normas , Biomarcadores/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/diagnóstico , Determinación de Punto Final , Antígenos/metabolismo , Estudios de Casos y Controles , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Humanos , Proteínas Recombinantes/metabolismo , Estándares de Referencia , Subunidad beta de la Proteína de Unión al Calcio S100/líquido cefalorraquídeo , Ubiquitina Tiolesterasa/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
11.
J Gen Virol ; 91(Pt 7): 1883-92, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20357038

RESUMEN

In this study, we demonstrate that a moderate amount of protein misfolding cyclic amplification (PMCA) coupled to a novel surround optical fibre immunoassay (SOFIA) detection scheme can be used to detect the disease-associated form of the prion protein (PrP(Sc)) in protease-untreated plasma from preclinical and clinical scrapie sheep, and white-tailed deer with chronic wasting disease, following natural and experimental infection. PrP(Sc), resulting from a conformational change of the normal (cellular) form of prion protein (PrP(C)), is considered central to neuropathogenesis and serves as the only reliable molecular marker for prion disease diagnosis. While the highest levels of PrP(Sc) are present in the central nervous system, the development of a reasonable diagnostic assay requires the use of body fluids that characteristically contain exceedingly low levels of PrP(Sc). PrP(Sc) has been detected in the blood of sick animals by means of PMCA technology. However, repeated cycling over several days, which is necessary for PMCA of blood material, has been reported to result in decreased specificity (false positives). To generate an assay for PrP(Sc) in blood that is both highly sensitive and specific, we have utilized limited serial PMCA (sPMCA) with SOFIA. We did not find any enhancement of sPMCA with the addition of polyadenylic acid nor was it necessary to match the genotypes of the PrP(C) and PrP(Sc) sources for efficient amplification.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas PrPSc/sangre , Proteínas PrPSc/aislamiento & purificación , Scrapie/sangre , Animales , Western Blotting , Genotipo , Proteínas PrPSc/genética , Proteínas PrPSc/inmunología , Pliegue de Proteína , Scrapie/genética , Ovinos
12.
Emerg Infect Dis ; 15(9): 1366-76, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19788803

RESUMEN

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy, or prion disease, that affects deer, elk, and moose. Human susceptibility to CWD remains unproven despite likely exposure to CWD-infected cervids. We used 2 nonhuman primate species, cynomolgus macaques and squirrel monkeys, as human models for CWD susceptibility. CWD was inoculated into these 2 species by intracerebral and oral routes. After intracerebral inoculation of squirrel monkeys, 7 of 8 CWD isolates induced a clinical wasting syndrome within 33-53 months. The monkeys' brains showed spongiform encephalopathy and protease-resistant prion protein (PrPres) diagnostic of prion disease. After oral exposure, 2 squirrel monkeys had PrPres in brain, spleen, and lymph nodes at 69 months postinfection. In contrast, cynomolgus macaques have not shown evidence of clinical disease as of 70 months postinfection. Thus, these 2 species differed in susceptibility to CWD. Because humans are evolutionarily closer to macaques than to squirrel monkeys, they may also be resistant to CWD.


Asunto(s)
Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Macaca fascicularis/metabolismo , Enfermedades por Prión/patología , Priones/patogenicidad , Saimiri/metabolismo , Enfermedad Debilitante Crónica/patología , Animales , Encéfalo/metabolismo , Humanos , Ganglios Linfáticos/metabolismo , Ratones , Ratones Transgénicos , Péptido Hidrolasas/farmacología , Enfermedades por Prión/metabolismo , Priones/efectos de los fármacos , Priones/metabolismo , Especificidad de la Especie , Bazo/metabolismo , Enfermedad Debilitante Crónica/metabolismo
13.
Front Neurol ; 10: 124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915013

RESUMEN

Traumatic brain injury (TBI) is a risk factor for a group of neurodegenerative diseases termed tauopathies, which includes Alzheimer's disease and chronic traumatic encephalopathy (CTE). Although TBI is stratified by impact severity as either mild (m), moderate or severe, mTBI is the most common and the most difficult to diagnose. Tauopathies are pathologically related by the accumulation of hyperphosphorylated tau (P-tau) and increased total tau (T-tau). Here we describe: (i) a novel human tau-expressing transgenic mouse model, TghTau/PS1, to study repetitive mild closed head injury (rmCHI), (ii) quantitative comparison of T-tau and P-tau from brain and plasma in TghTau/PS1 mice over a 12 month period following rmCHI (and sham), (iii) the usefulness of P-tau as an early- and late-stage blood-based biochemical biomarker for rmCHI, (iii) the influence of kinase-targeted therapeutic intervention on rmCHI-associated cognitive deficits using a combination of lithium chloride (LiCl) and R-roscovitine (ros), and (iv) correlation of behavioral and cognitive changes with concentrations of the brain and blood-based T-tau and P-tau. Compared to sham-treated mice, behavior changes and cognitive deficits of rmCHI-treated TghTau/PS1 mice correlated with increases in both cortex and plasma T-tau and P-tau levels over 12 months. In addition, T-tau, but more predominantly P-tau, levels were significantly reduced in the cortex and plasma by LiCl + ros approaching the biomarker levels in sham and drug-treated sham mice (the drugs had only modest effects on the T-tau and P-tau levels in sham mice) throughout the 12 month study period. Furthermore, although we also observed a reversal of the abnormal behavior and cognitive deficits in the drug-treated rmCHI mice (compared to the untreated rmCHI mice) throughout the time course, these drug-treated effects were most pronounced up until 10 and 12 months where the abnormal behavior and cognition deficits began to gradually increase. These studies describe: (a) a translational relevant animal model for TBI-linked tauopathies, and (b) utilization of T-tau and P-tau as rmCHI biomarkers in plasma to monitor novel therapeutic strategies and treatment regimens for these neurodegenerative diseases.

14.
J Neuroimmunol ; 205(1-2): 94-100, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18977037

RESUMEN

We have characterized the antibody-antigen binding events of the prion protein (PrP) utilizing three new PrP-specific monoclonal antibodies (Mabs). The degree of immunoreactivity was dependent on the denaturation treatment with the combination of heat and SDS resulting in the highest levels of epitope accessibility and antibody binding. Interestingly however, this harsh denaturation treatment was not sufficient to completely and irreversibly abolish protein conformation. The Mabs differed in their PrP epitopes with Mab 08-1/11F12 binding in the region of PrP(93-122), Mab 08-1/8E9 reacting to PrP(155-200) and Mab 08-1/5D6 directed to an undefined conformational epitope. Using normal and infected brains from hamsters, sheep and deer, we demonstrate that the binding of PrP to one Mab triggers PrP epitope unmasking, which enhances the binding of a second Mab. This phenomenon, termed positive immunocooperativity, is specific regarding epitope and the sequence of binding events. Positive immunocooperativity will likely increase immunoassay sensitivity since assay conditions for PrP(Sc) detection does not require protease digestion.


Asunto(s)
Reacciones Antígeno-Anticuerpo , Epítopos/inmunología , Proteínas PrPC/inmunología , Scrapie/inmunología , Enfermedad Debilitante Crónica/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Biotinilación/métodos , Western Blotting , Encéfalo/patología , Cricetinae , Ciervos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Scrapie/patología , Ovinos , Enfermedad Debilitante Crónica/patología
15.
Acta Neuropathol ; 116(4): 419-24, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18483741

RESUMEN

Stimulation of endogenous neurogenesis and transplantation of neuronal progenitors (NPs) are considered in therapy of neuronal loss associated with ageing and in neurodegenerative diseases with amyloidosis-beta, for example, Alzheimer's disease and Down syndrome. However, the influence of brain environment altered by ageing and deposits of amyloid-beta on proliferation of endogenous and transplanted NPs and their maturation into neurons is not understood. We studied the effect of ageing and development of amyloidosis-beta on proliferation of NPs (1) in the granular layer of dentate gyrus in the hippocampi of APP-transgenic mice (Tg9291) before and after development of amyloidosis-beta, that is, in mice aged 2-4 months and 9-12 months, respectively, and in age-matched controls; and (2) in culture of NPs isolated from brains of control and Tg9291 mice, aged 3 and 9 months. We found that the number of proliferating NPs was reduced in 9-12-months-old mice, in both control and Tg9291, as compared to 2-4-months-old mice. However, the 9-12-months-old Tg9291 mice with amyloid-beta deposits had significantly more proliferating NPs than the age-matched controls. NPs proliferation in culture did not depend on the age, presence of APP-transgene, and amyloidosis-beta in donors. The results indicate that the local brain environment influences proliferation of NPs, and development of amyloidosis-beta in the neurogenic regions attenuates the age-associated reduction of proliferation of NPs. Identification of the responsible mechanisms may be important for development of a successful therapy of neurodegeneration caused by amyloidosis-beta.


Asunto(s)
Envejecimiento/patología , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/patología , Proliferación Celular , Hipocampo/patología , Neuronas/patología , Células Madre/patología , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/metabolismo , Células Madre/metabolismo
16.
Behav Brain Res ; 340: 29-40, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27188531

RESUMEN

The normal cellular prion protein (PrPC) is a sialoglycoprotein with a glycophosphatidylinositol anchor and expressed in highest levels within the CNS particularly at neuronal synapses. This membrane-bound protein is involved with many cell functions including cell signaling and neuroprotection. Calpains are calcium-activated cysteine proteases that typically undergo controlled activation. PrPC is a calpain substrate and is neurotoxic if it undergoes aberrant processing with cytosol accumulation. Following traumatic brain injury (TBI), there is an abnormal influx of Ca+2 and overactivation of calpains resulting in neuronal dysfunction and cell death. We investigated whether PrPC expression and calpain activity have an effect on, or are affected by, TBI. PrPC expression in the hippocampus, cortex and cerebellum of WT and Tga20 (PrPC overexpression) mice were unchanged after closed head injury (CHI). Further, PrPC in WT and Tga20 mice was resistant to TBI-induced calpain proteolysis. CHI-induced calpain activation resulted in breakdown products (BDPs) of αII-spectrin (SBDPs) and GFAP (GBDP-44K) in all brain regions and mouse lines. CHI caused significant increases in SBDP145, GFAP and GBDP-44K when compared to sham. With few exceptions, the calpain inhibitor, SNJ-1945, reduced SBDP145 and GBDP-44K levels. Behavioral studies suggested that PrPC and calpain independently affect learning and memory. Overall, we conclude that: (i) there is SNJ-1945-sensitive calpain activation in both neuron and glial cells following CHI, (ii) closed head trauma is not affected by, nor does it have an influence on, PrPC expression, and (iii) PrPC expression plays a minor role, if any, in CHI-induced calpain activation in vivo.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Calpaína/metabolismo , Traumatismos Cerrados de la Cabeza/metabolismo , Proteínas PrPC/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Calpaína/antagonistas & inhibidores , Carbamatos/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Traumatismos Cerrados de la Cabeza/complicaciones , Traumatismos Cerrados de la Cabeza/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteínas PrPC/genética , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología
17.
Expert Rev Mol Diagn ; 18(2): 165-180, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29338452

RESUMEN

INTRODUCTION: Traumatic brain injury (TBI) is a major worldwide neurological disorder of epidemic proportions. To date, there are still no FDA-approved therapies to treat any forms of TBI. Encouragingly, there are emerging data showing that biofluid-based TBI biomarker tests have the potential to diagnose the presence of TBI of different severities including concussion, and to predict outcome. Areas covered: The authors provide an update on the current knowledge of TBI biomarkers, including protein biomarkers for neuronal cell body injury (UCH-L1, NSE), astroglial injury (GFAP, S100B), neuronal cell death (αII-spectrin breakdown products), axonal injury (NF proteins), white matter injury (MBP), post-injury neurodegeneration (total Tau and phospho-Tau), post-injury autoimmune response (brain antigen-targeting autoantibodies), and other emerging non-protein biomarkers. The authors discuss biomarker evidence in TBI diagnosis, outcome prognosis and possible identification of post-TBI neurodegernative diseases (e.g. chronic traumatic encephalopathy and Alzheimer's disease), and as theranostic tools in pre-clinical and clinical settings. Expert commentary: A spectrum of biomarkers is now at or near the stage of formal clinical validation of their diagnostic and prognostic utilities in the management of TBI of varied severities including concussions. TBI biomarkers could serve as a theranostic tool in facilitating drug development and treatment monitoring.


Asunto(s)
Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/mortalidad , Humanos , Biopsia Líquida , Neuroimagen/métodos , Pronóstico , Índice de Severidad de la Enfermedad
18.
J Neurotrauma ; 35(20): 2341-2350, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29717620

RESUMEN

Plasma tau and glial fibrillary acidic protein (GFAP) are promising biomarkers for identifying traumatic brain injury (TBI) patients with intracranial trauma on computed tomography (CT). Accuracy in older adults with mild TBI (mTBI), the fastest growing TBI population, is unknown. Our aim was to assess for age-related differences in diagnostic accuracy of plasma tau and GFAP for identifying intracranial trauma on CT. Samples from 169 patients (age <40 years [n = 79], age 40-59 years [n = 60], age 60 years+ [n = 30]), a subset of patients from the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study who presented with mTBI (Glasgow Coma Scale score of 13-15), received head CT, and consented to blood draw within 24 h of injury, were assayed for hyperphosphorylated-tau (P-tau), total-tau (T-tau; both via amplification-linked enhanced immunoassay using multi-arrayed fiberoptics), and GFAP (via sandwich enzyme-linked immunosorbent assay). P-tau, T-tau, P-tau:T-tau ratio, and GFAP concentration were significantly associated with CT findings. Overall, discriminative ability declined with increasing age for all assays, but this decline was only statistically significant for GFAP (area under the receiver operating characteristic curve [AUC]: old 0.73 [reference group; ref] vs. young 0.93 [p = 0.037] or middle-aged 0.92 [p = 0.0497]). P-tau concentration consistently showed the highest diagnostic accuracy across all age-groups (AUC: old 0.84 [ref] vs. young 0.95 [p = 0.274] or middle-aged 0.93 [p = 0.367]). Comparison of models including P-tau alone versus P-tau plus GFAP revealed significant added value of GFAP. In conclusion, the GFAP assay was less accurate for identifying intracranial trauma on CT among older versus younger mTBI patients. Mechanisms of this age-related difference, including role of assay methodology, specific TBI neuroanatomy, pre-existing conditions, and anti-thrombotic use, warrant further study.


Asunto(s)
Factores de Edad , Biomarcadores/sangre , Conmoción Encefálica/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Proteínas tau/sangre , Adulto , Anciano , Conmoción Encefálica/diagnóstico , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Tomografía Computarizada por Rayos X
19.
J Neuroimmunol ; 187(1-2): 74-82, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17524497

RESUMEN

A number of aspects of the pathogenesis of scrapie, the archetype disease of the transmissible spongiform encephalopathies (prion disorders), remain to be elucidated. There is increasing evidence that there are cerebral based inflammatory processes that may contribute to the pathogenesis and to the progression of a number of neurodegenerative disorders, including prion diseases. In peripheral tissues, a key element that controls the generation of proinflammatory mediators is the highly inducible protein cyclooxygenase-2 (COX-2). In this study, in order to examine the possible association of COX-2 with the pathogenesis of scrapie, we analyzed the expression level and the cellular localization of COX-2 in the brains of control and scrapie-infected mice. The COX-2 mRNA and protein levels were increased significantly compared to the control group of mice. By immunohistological analysis, intense immunoreactivity of COX-2 was localized primarily in reactive astrocytes, with virtually no staining in sections from control mice. The staining for COX-2 was co-localized with the pathological form of the prion protein (PrP(Sc)) and with nuclear factor-kappa B (NF-kappaB). These results suggest that the upregulation of COX-2 expression in astrocytes may be related to the accumulation of PrP(Sc), and that COX-2 may then lead to the progression of scrapie, possibly by propagation of a cerebral inflammatory response.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/patología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Scrapie/patología , Animales , Astrocitos/citología , Astrocitos/virología , Encéfalo/virología , Dinoprostona/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Priones/metabolismo , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Scrapie/metabolismo
20.
Acta Neuropathol Commun ; 5(1): 30, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28420443

RESUMEN

Studies in vivo and in vitro have suggested that the mechanism underlying Alzheimer's disease (AD) neuropathogenesis is initiated by an interaction between the cellular prion protein (PrPC) and amyloid-ß oligomers (Aßo). This PrPC-Aßo complex activates Fyn kinase which, in turn, hyperphosphorylates tau (P-Tau) resulting in synaptic dysfunction, neuronal loss and cognitive deficits. AD transgenic mice lacking PrPC accumulate Aß, but show normal survival and no loss of spatial learning and memory suggesting that PrPC functions downstream of Aßo production but upstream of intracellular toxicity within neurons. Since AD and traumatic brain injury (TBI)-linked chronic traumatic encephalopathy are tauopathies, we examined whether similar mechanistic pathways are responsible for both AD and TBI pathophysiologies. Using transgenic mice expressing different levels of PrPC, our studies investigated the influence and necessity of PrPC on biomarker (total-tau [T-Tau], P-Tau, GFAP) levels in brain and blood as measured biochemically following severe TBI in the form of severe closed head injury (sCHI). We found that following sCHI, increasing levels of T-Tau and P-Tau in the brain were associated with the PrPC expression levels. A similar relationship between PrPC expression and P-Tau levels following sCHI were found in blood in the absence of significant T-Tau changes. This effect was not seen with GFAP which increased within 24 h following sCHI and progressively decreased by the 7 day time point regardless of the PrPC expression levels. Changes in the levels of all biomarkers were independent of gender. We further enhanced and expanded the quantitation of brain biomarkers with correlative studies using immunohisochemistry. We also demonstrate that a TBI-induced calpain hyperactivation is not required for the generation of P-Tau. A relationship was demonstrated between the presence/absence of PrPC, the levels of P-Tau and cognitive dysfunction. Our studies suggest that PrPC is important in mediating TBI related pathology.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Proteínas PrPC/metabolismo , Proteínas tau/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/psicología , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Cognición/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA