Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chem Rev ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941181

RESUMEN

Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.

2.
J Pept Sci ; 30(6): e3569, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38301277

RESUMEN

The pursuit of novel antifungal agents is imperative to tackle the threat of antifungal resistance, which poses major risks to both human health and to food security. Iturin A is a cyclic lipopeptide, produced by Bacillus sp., with pronounced antifungal properties against several pathogens. Its challenging synthesis, mainly due to the laborious synthesis of the ß-amino fatty acid present in its structure, has hindered the study of its mode of action and the development of more potent analogues. In this work, a facile synthesis of bioactive iturin A analogues containing an alkylated cysteine residue is presented. Two analogues with opposite configurations of the alkylated cysteine residue were synthesized, to evaluate the role of the stereochemistry of the newly introduced amino acid on the bioactivity. Antifungal assays, conducted against F. graminearum, showed that the novel analogues are bioactive and can be used as a synthetic model for the design of new analogues and in structure-activity relationship studies. The assays also highlight the importance of the ß-amino acid in the natural structure and the role of the stereochemistry of the amino fatty acid, as the analogue with the D configuration showed stronger antifungal properties than the one with the L configuration.


Asunto(s)
Antifúngicos , Fusarium , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad , Lipopéptidos/farmacología , Lipopéptidos/química , Lipopéptidos/síntesis química , Fusarium/efectos de los fármacos , Estructura Molecular
3.
Org Biomol Chem ; 20(32): 6324-6328, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35876282

RESUMEN

4-Substituted prolines, especially 4-fluoroprolines, have been widely used in protein engineering and design. Here, we report a robust and stereoselective approach for the synthesis of (2S,4S)-methylproline starting from (2S)-pyroglutamic acid. Incorporation studies with both (2S,4R)- and (2S,4S)-methylproline into the Trx1P variant of the model protein thioredoxin of E. coli show that the stereochemistry of the 4-methyl group might be a key determinator for successful incorporation during ribosomal synthesis of this protein.


Asunto(s)
Escherichia coli , Prolina , Escherichia coli/genética , Ingeniería de Proteínas , Estereoisomerismo , Tiorredoxinas
4.
Chembiochem ; 22(23): 3326-3332, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34545985

RESUMEN

C4 -substituted fluoroprolines (4R)-fluoroproline ((4R)-Flp) and (4S)-fluoroproline ((4S)-Flp) have been used in protein engineering to enhance the thermodynamic stability of peptides and proteins. The electron-withdrawing effect of fluorine can bias the pucker of the pyrrolidine ring, influence the conformational preference of the preceding peptide bond, and can accelerate the cis/trans prolyl peptide bond isomerisation by diminishing its double bond character. The role of 4,4-difluoroproline (Dfp) in the acceleration of the refolding rate of globular proteins bearing a proline (Pro) residue in the cis conformation in the native state remains elusive. Moreover, the impact of Dfp on the thermodynamic stability and bioactivity of globular proteins has been seldom described. In this study, we show that the incorporation of Dfp caused a redox state dependent and position dependent destabilisation of the thioredoxin (Trx) fold, while the catalytic activities of the modified proteins remained unchanged. The Pro to Dfp substitution at the conserved cisPro76 in the thioredoxin variant Trx1P did not elicited acceleration of the rate-limiting trans-to-cis isomerization of the Ile75-Pro76 peptide bond. Our results show that pucker preferences in the context of a tertiary structure could play a major role in protein folding, thus overtaking the rules determined for cis/trans isomerisation barriers determined in model peptides.


Asunto(s)
Prolina/análogos & derivados , Tiorredoxinas/química , Humanos , Prolina/química , Pliegue de Proteína , Termodinámica
5.
Chembiochem ; 22(6): 1093-1098, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33170522

RESUMEN

Antibiotic resistance is a growing problem for public health and associated with increasing economic costs and mortality rates. Silver and silver-related compounds have been used for centuries due to their antimicrobial properties. In this work, we show that 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate/NHC*-Ag-OAc (SBC3) is a reversible, high affinity inhibitor of E. coli thioredoxin reductase (TrxR; Ki =10.8±1.2 nM). Minimal inhibition concentration (MIC) tests with different E. coli and P. aeruginosa strains demonstrated that SBC3 can efficiently inhibit bacterial cell growth, especially in combination with established antibiotics like gentamicin. Our results show that SBC3 is a promising antibiotic drug candidate targeting bacterial TrxR.


Asunto(s)
Antibacterianos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Antibacterianos/metabolismo , Antibacterianos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Gentamicinas/farmacología , Imidazolinas/química , Imidazolinas/metabolismo , Imidazolinas/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/metabolismo
6.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885985

RESUMEN

The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.


Asunto(s)
Antibacterianos/química , Péptidos Antimicrobianos/química , Halogenación , Halógenos/química , Peptidomiméticos/metabolismo , Prolina/análogos & derivados , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Peptidomiméticos/química , Peptoides/química , Prolina/química , Relación Estructura-Actividad
7.
J Biol Chem ; 294(38): 14105-14118, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366732

RESUMEN

Thioredoxin (Trx) is a conserved, cytosolic reductase in all known organisms. The enzyme receives two electrons from NADPH via thioredoxin reductase (TrxR) and passes them on to multiple cellular reductases via disulfide exchange. Despite the ubiquity of thioredoxins in all taxa, little is known about the functions of resurrected ancestral thioredoxins in the context of a modern mesophilic organism. Here, we report on functional in vitro and in vivo analyses of seven resurrected Precambrian thioredoxins, dating back 1-4 billion years, in the Escherichia coli cytoplasm. Using synthetic gene constructs for recombinant expression of the ancestral enzymes, along with thermodynamic and kinetic assays, we show that all ancestral thioredoxins, as today's thioredoxins, exhibit strongly reducing redox potentials, suggesting that thioredoxins served as catalysts of cellular reduction reactions from the beginning of evolution, even before the oxygen catastrophe. A detailed, quantitative characterization of their interactions with the electron donor TrxR from Escherichia coli and the electron acceptor methionine sulfoxide reductase, also from E. coli, strongly hinted that thioredoxins and thioredoxin reductases co-evolved and that the promiscuity of thioredoxins toward downstream electron acceptors was maintained during evolution. In summary, our findings suggest that thioredoxins evolved high specificity for their sole electron donor TrxR while maintaining promiscuity to their multiple electron acceptors.


Asunto(s)
Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Disulfuros/metabolismo , Escherichia coli/metabolismo , Evolución Molecular , Historia Antigua , Cinética , NADP/metabolismo , Oxidantes/metabolismo , Oxidación-Reducción , Relación Estructura-Actividad
8.
Chembiochem ; 20(15): 1914-1918, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30973186

RESUMEN

The biological activity of the glycoprotein hormone erythropoietin (EPO) is dependent mainly on the structure of its N-linked glycans. We aimed to readily attach defined N-glycans to EPO through copper-catalyzed azide alkyne cycloaddition. EPO variants with an alkyne-bearing non-natural amino acid (Plk) at the N-glycosylation sites 24, 38, and 83 were obtained by amber suppression followed by protein purification and refolding. Click conjugation of the alkynyl EPOs with biantennary N-glycan azides provided biologically active site-specifically modified EPO glycoconjugates.


Asunto(s)
Eritropoyetina/síntesis química , Polisacáridos/química , Eritropoyetina/química , Humanos , Modelos Moleculares , Estructura Molecular
9.
Chembiochem ; 16(15): 2162-6, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26382254

RESUMEN

The incorporation of the non-natural amino acids (4R)- and (4S)-fluoroproline (Flp) has been successfully used to improve protein stability, but little is known about their effect on protein folding kinetics. Here we analyzed the influence of (4R)- and (4S)-Flp on the rate-limiting trans-to-cis isomerization of the Ile75-Pro76 peptide bond in the folding of Escherichia coli thioredoxin (Trx). While (4R)-Flp at position 76 had essentially no effect on the isomerization rate in the context of the intact tertiary structure, (4S)-Flp accelerated the folding reaction ninefold. Similarly, tenfold faster trans-to-cis isomerization of Ile75-(4S)-Flp76 relative to Ile75-Pro76 was observed in the unfolded state of Trx. Our results show that the replacement of cis prolines by non-natural proline analogues can be used for modulating the folding rates of proteins with cis prolyl-peptide bonds in the native state.


Asunto(s)
Prolina/análogos & derivados , Prolina/química , Pliegue de Proteína , Tiorredoxinas/química , Escherichia coli/química , Modelos Moleculares , Prolina/metabolismo , Estereoisomerismo
10.
Protein Sci ; 33(2): e4877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38115231

RESUMEN

The cis/trans isomerization of peptidyl-prolyl peptide bonds is often the bottleneck of the refolding reaction for proteins containing cis proline residues in the native state. Proline (Pro) analogues, especially C4-substituted fluoroprolines, have been widely used in protein engineering to enhance the thermodynamic stability of peptides and proteins and to investigate folding kinetics. 4-thiaproline (Thp) has been shown to bias the ring pucker of Pro, to increase the cis population percentage of model peptides in comparison to Pro, and to diminish the activation energy barrier for the cis/trans isomerization reaction. Despite its intriguing properties, Thp has been seldom incorporated into proteins. Moreover, the impact of Thp on the folding kinetics of globular proteins has never been reported. In this study, we show that upon incorporation of Thp at cisPro76 into the thioredoxin variant Trx1P the half-life of the refolding reaction decreased from ~2 h to ~35 s. A dramatic acceleration of the refolding rate could be observed also for the protein pseudo wild-type barstar upon replacement of cisPro48 with Thp. Quantum chemical calculations suggested that the replacement of the Cγ H2 group by a sulfur atom in the pyrrolidine ring, might lower the barrier for cis/trans rotation due to a weakened peptide bond. The protein variants retained their thermodynamic stability upon incorporation of Thp, while the catalytic and enzymatic activities of the modified Trx1P remained unchanged. Our results show that the Pro isostere Thp might accelerate the rate of the slow refolding reaction for proteins containing cis proline residues in the native state, independent from the local structural environment.


Asunto(s)
Prolina , Pliegue de Proteína , Prolina/química , Tiazolidinas , Péptidos/química , Cinética , Conformación Proteica
11.
Chembiochem ; 14(9): 1053-7, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23712956

RESUMEN

Fine-tuning protein stability: The non-natural amino acids (2S,4R)- and (2S,4S)-fluoroproline modulate protein stability by biasing the proline ring pucker and the cis/trans equilibrium of prolyl peptide bonds. We incorporated both fluoroproline stereoisomers at the invariant cis-proline residue of the thioredoxin fold. The results show that tertiary structure context overrules the conformational preferences of fluoroprolines.


Asunto(s)
Prolina/análogos & derivados , Tiorredoxinas/química , Dominio Catalítico , Cristalografía por Rayos X , Oxidación-Reducción , Prolina/química , Ingeniería de Proteínas , Replegamiento Proteico , Desplegamiento Proteico , Estereoisomerismo , Termodinámica , Tiorredoxinas/metabolismo
12.
J Phys Chem Lett ; 13(30): 7058-7064, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35900133

RESUMEN

Protein aggregation into amyloid fibrils has been observed in several pathological conditions and exploited in nanotechnology. It is also key in several biochemical processes. In this work, we show that ionic liquids (ILs), a vast class of organic electrolytes, can finely tune amyloid properties, opening a new landscape in basic science and applications. The representative case of ethylammonium nitrate (EAN) and tetramethyl-guanidinium acetate (TMGA) ILs on lysozyme is considered. First, atomic force microscopy has shown that the addition of EAN and TMGA leads to thicker and thinner amyloid fibrils of greater and lower electric potential, respectively, with diameters finely tunable by IL concentration. Optical tweezers and neutron scattering have shed light on their mechanism of action. TMGA interacts with the protein hydration layer only, making the relaxation dynamics of these water molecules faster. EAN interacts directly with the protein instead, making it mechanically unstable and slowing down its relaxation dynamics.


Asunto(s)
Líquidos Iónicos , Acetatos , Amiloide/química , Antivirales , Guanidina , Líquidos Iónicos/química , Muramidasa/química , Compuestos de Amonio Cuaternario
13.
J Am Chem Soc ; 133(11): 3708-11, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21341705

RESUMEN

A novel kind of fluorescent protein relying on the intramolecular interplay between two different fluorophores, one of chemical origin and one of biological origin, was developed. The fluorescent non-natural amino acid l-(7-hydroxycoumarin-4-yl)ethylglycine was site-specifically incorporated into the recombinant enhanced cyan fluorescent protein (eCFP) at a permissible surface position ∼20 Å away from the protein fluorophore using amber suppression in Escherichia coli with an engineered cognate Methanococcus jannaschii tRNA synthetase. The resulting eCFP(Cou) exhibited almost quantitative intramolecular Förster resonance energy transfer (FRET) between its two fluorophores, showing brilliant cyan emission at 476 nm upon excitation in the near-UV at 365 nm (a wavelength easily accessible via conventional laboratory UV sources), in contrast to its natural counterpart. Thus, this fluorescent protein with unprecedented spectroscopic properties reveals an extreme apparent Stokes shift of ∼110 nm between the absorption wavelength of the coumaryl group and the emission wavelength of eCFP.


Asunto(s)
Aminoácidos/metabolismo , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/biosíntesis , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/genética , Methanococcus/enzimología , Modelos Moleculares , Ingeniería de Proteínas , Espectrometría de Fluorescencia
14.
Chembiochem ; 12(18): 2807-12, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22052741

RESUMEN

Genotoxic stress results in more than 50 000 damaged DNA sites per cell per day. During DNA replication, processive high-fidelity DNA polymerases generally stall at DNA lesions and have to be displaced by translesion synthesis DNA polymerases, which are able to bypass the lesion. This switch is mediated by mono-ubiquitination of the processivity factor proliferating cell nuclear antigen (PCNA). To further investigate the regulation of the DNA polymerase exchange, we developed an easy and efficient method to synthesize site-specifically mono-ubiquitinated PCNA by click chemistry. By incorporating artificial amino acids that carry an azide (Aha) or an alkyne (Plk) in their side chains, into ubiquitin (Ub) and PCNA, respectively, we were able to link the two proteins site-specifically by the Cu(I) -catalyzed azide-alkyne cycloaddition. Finally, we show that the synthetic PCNA-Ub is able to stimulate DNA synthesis by DNA polymerase δ, and that DNA polymerase η has a higher affinity for PCNA-Ub than to PCNA.


Asunto(s)
ADN/química , Imitación Molecular , Antígeno Nuclear de Célula en Proliferación/química , Ubiquitina/química , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Espectrometría de Masa por Ionización de Electrospray
15.
ACS Nano ; 15(7): 12161-12170, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34184536

RESUMEN

The precise spatial localization of proteins in situ by super-resolution microscopy (SRM) demands their targeted labeling. Positioning reporter molecules as close as possible to the target remains a challenge in primary cells or tissues from patients that cannot be easily genetically modified. Indirect immunolabeling introduces relatively large linkage errors, whereas site-specific and stoichiometric labeling of primary antibodies relies on elaborate chemistries. In this study, we developed a simple two-step protocol to site-specifically attach reporters such as fluorophores or DNA handles to several immunoglobulin G (IgG) antibodies from different animal species and benchmarked the performance of these conjugates for 3D STORM (stochastic optical reconstruction microscopy) and DNA-PAINT (point accumulation in nanoscale topography). Glutamine labeling was restricted to two sites per IgG and saturable by exploiting microbial transglutaminase after removal of N-linked glycans. Precision measurements of 3D microtubule labeling shell dimensions in cell lines and human platelets showed that linkage errors from primary and secondary antibodies did not add up. Monte Carlo simulations of a geometric microtubule-IgG model were in quantitative agreement with STORM results. The simulations revealed that the flexible hinge between Fab and Fc segments effectively randomized the direction of the secondary antibody, while the restricted binding orientation of the primary antibody's Fab fragment accounted for most of the systematic offset between the reporter and α-tubulin. DNA-PAINT surprisingly yielded larger linkage errors than STORM, indicating unphysiological conformations of DNA-labeled IgGs. In summary, our cost-effective protocol for generating well-characterized primary IgG conjugates offers an easy route to precise SRM measurements in arbitrary fixed samples.


Asunto(s)
ADN , Inmunoglobulina G , Animales , Humanos , Microscopía Fluorescente/métodos , ADN/química
16.
J Am Chem Soc ; 132(46): 16337-9, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21033666

RESUMEN

Many proteins are post-translationally modified by the attachment of poly-ubiquitin (Ub) chains. Notably, the biological function of the attached Ub chain depends on the specific lysine residue used for conjugate formation. Here, we report an easy and efficient method to synthesize site-specifically linked Ub dimers by click reaction between two artificial amino acids. In fact, we were able to synthesize all seven naturally occurring Ub connectivities, providing the first example of a method that gives access to all Ub dimers. Furthermore, these synthetic Ub dimers are recognized by the natural ubiquitination machinery and are proteolytically stable, making them optimal candidates to further investigate the function of differently linked Ub chains.


Asunto(s)
Ubiquitina/síntesis química , Secuencia de Aminoácidos , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Ubiquitina/química
17.
Biochim Biophys Acta ; 1764(7): 1147-58, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16782415

RESUMEN

The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.


Asunto(s)
Proteínas Bacterianas/química , Triptófano/análogos & derivados , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Dicroismo Circular , Cristalografía por Rayos X , Código Genético/genética , Cinética , Modelos Moleculares , Biosíntesis de Proteínas/genética , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Temperatura , Termodinámica , Triptófano/química , Triptófano/genética , Urea/química
18.
J Mol Biol ; 328(5): 1071-81, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12729742

RESUMEN

Much effort has been dedicated to the design of significantly red shifted variants of the green fluorescent protein (GFP) from Aequoria victora (av). These approaches have been based on classical engineering with the 20 canonical amino acids. We report here an expansion of these efforts by incorporation of an amino substituted variant of tryptophan into the "cyan" GFP mutant, which turned it into a "gold" variant. This variant possesses a red shift in emission unprecedented for any avFP, similar to "red" FPs, but with enhanced stability and a very low aggregation tendency. An increasing number of non-natural amino acids are available for chromophore redesign (by engineering of the genetic code) and enable new general strategies to generate novel classes of tailor-made GFP proteins.


Asunto(s)
Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Ingeniería de Proteínas/métodos , Animales , Diseño de Fármacos , Estabilidad de Medicamentos , Código Genético , Proteínas Fluorescentes Verdes , Técnicas In Vitro , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometría de Fluorescencia , Electricidad Estática , Termodinámica
20.
Sci Rep ; 5: 11840, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26121966

RESUMEN

Cis prolyl peptide bonds are conserved structural elements in numerous protein families, although their formation is energetically unfavorable, intrinsically slow and often rate-limiting for folding. Here we investigate the reasons underlying the conservation of the cis proline that is diagnostic for the fold of thioredoxin-like thiol-disulfide oxidoreductases. We show that replacement of the conserved cis proline in thioredoxin by alanine can accelerate spontaneous folding to the native, thermodynamically most stable state by more than four orders of magnitude. However, the resulting trans alanine bond leads to small structural rearrangements around the active site that impair the function of thioredoxin as catalyst of electron transfer reactions by more than 100-fold. Our data provide evidence for the absence of a strong evolutionary pressure to achieve intrinsically fast folding rates, which is most likely a consequence of proline isomerases and molecular chaperones that guarantee high in vivo folding rates and yields.


Asunto(s)
Proteínas de Escherichia coli/química , Pliegue de Proteína , Tiorredoxinas/química , Sustitución de Aminoácidos , Dominio Catalítico , Dicroismo Circular , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli , Proteínas de Escherichia coli/genética , Isomerismo , Cinética , Modelos Moleculares , Oxidación-Reducción , Prolina/química , Estructura Secundaria de Proteína , Termodinámica , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA