Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
NPJ Regen Med ; 8(1): 13, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869039

RESUMEN

The single curative measure for heart failure patients is a heart transplantation, which is limited due to a shortage of donors, the need for immunosuppression and economic costs. Therefore, there is an urgent unmet need for identifying cell populations capable of cardiac regeneration that we will be able to trace and monitor. Injury to the adult mammalian cardiac muscle, often leads to a heart attack through the irreversible loss of a large number of cardiomyocytes, due to an idle regenerative capability. Recent reports in zebrafish indicate that Tbx5a is a vital transcription factor for cardiomyocyte regeneration. Preclinical data underscore the cardioprotective role of Tbx5 upon heart failure. Data from our earlier murine developmental studies have identified a prominent unipotent Tbx5-expressing embryonic cardiac precursor cell population able to form cardiomyocytes, in vivo, in vitro and ex vivo. Using a developmental approach to an adult heart injury model and by employing a lineage-tracing mouse model as well as the use of single-cell RNA-seq technology, we identify a Tbx5-expressing ventricular cardiomyocyte-like precursor population, in the injured adult mammalian heart. The transcriptional profile of that precursor cell population is closer to that of neonatal than embryonic cardiomyocyte precursors. Tbx5, a cardinal cardiac development transcription factor, lies in the center of a ventricular adult precursor cell population, which seems to be affected by neurohormonal spatiotemporal cues. The identification of a Tbx5-specific cardiomyocyte precursor-like cell population, which is capable of dedifferentiating and potentially deploying a cardiomyocyte regenerative program, provides a clear target cell population for translationally-relevant heart interventional studies.

3.
Cells ; 11(24)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552813

RESUMEN

We have previously shown that skeletal muscle-derived Sca-1+/PW1+/Pax7- interstitial cells (PICs) are multi-potent and enhance endogenous repair and regeneration. Here, we investigated the regenerative potential of PICs following intramyocardial transplantation in mice subjected to an acute myocardial infarction (MI). MI was induced through the ligation of the left anterior descending coronary artery in 8-week old male C57BL/6 mice. 5 × 105 eGFP-labelled PICs (MI + PICs; n = 7) or PBS (MI-PBS; n = 7) were injected intramyocardially into the border zone. Sham mice (n = 8) were not subjected to MI, or the transplantation of PICs or PBS. BrdU was administered via osmotic mini-pump for 14 days. Echocardiography was performed prior to surgery (baseline), and 1-, 3- and 6-weeks post-MI and PICs transplantation. Mice were sacrificed at 6 weeks post-MI + PICs transplantation, and heart sections were analysed for fibrosis, hypertrophy, engraftment, proliferation, and differentiation of PICs. A significant (p < 0.05) improvement in ejection fraction (EF) and fractional shortening was observed in the MI-PICs group, compared to MI + PBS group at 6-weeks post MI + PICs transplantation. Infarct size/fibrosis of the left ventricle significantly (p < 0.05) decreased in the MI-PICs group (14.0 ± 2.5%), compared to the MI-PBS group (32.8 ± 2.2%). Cardiomyocyte hypertrophy in the border zone significantly (p < 0.05) decreased in the MI-PICs group compared to the MI-PBS group (330.0 ± 28.5 µM2 vs. 543.5 ± 26.6 µm2), as did cardiomyocyte apoptosis (0.6 ± 0.9% MI-PICs vs. 2.8 ± 0.8% MI-PBS). The number of BrdU+ cardiomyocytes was significantly (p < 0.05) increased in the infarct/border zone of the MI-PICs group (7.0 ± 3.3%), compared to the MI-PBS group (1.7 ± 0.5%). The proliferation index (total BrdU+ cells) was significantly increased in the MI-PICs group compared to the MI-PBS group (27.0 ± 3.4% vs. 7.6 ± 1.0%). PICs expressed and secreted pro-survival and reparative growth factors, supporting a paracrine effect of PICs during recovery/remodeling. Skeletal muscle-derived PICs show significant reparative potential, attenuating cardiac remodelling following transplantation into the infarcted myocardium. PICs can be easily sourced from skeletal muscle and therefore show promise as a potential cell candidate for supporting the reparative and regenerative effects of cell therapies.


Asunto(s)
Infarto del Miocardio , Ratones , Masculino , Animales , Bromodesoxiuridina , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Músculo Esquelético/metabolismo , Fibrosis , Hipertrofia , Factor de Transcripción PAX7
4.
Hypertens Res ; 42(4): 439-449, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30631157

RESUMEN

A high-fat diet (HFD) induces an increase in arterial pressure and a decrease in baroreflex function, which may be associated with increased expression of angiotensin type 1 receptor (AT1R) and pro-inflammatory cytokine genes and reduced expression of the angiotensin type 2 receptor (AT2R) gene within the nucleus of the solitary tract (NTS), a key area of the brainstem involved in cardiovascular control. Thus, in the present study, we evaluated the changes in arterial pressure and gene expression of components of the renin-angiotensin system (RAS) and neuroinflammatory markers in the NTS of rats fed a HFD and treated with either an AT1R blocker or with virus-mediated AT2R overexpression in the NTS. Male Holtzman rats (300-320 g) were fed either a standard rat chow diet (SD) or HFD for 6 weeks before commencing the tests. AT1R blockade in the NTS of HFD-fed rats attenuated the increase in arterial pressure and the impairment of reflex bradycardia, whereas AT2R overexpression in the NTS only improved the baroreflex function. The HFD also increased the hypertensive and decreased the protective axis of the RAS and was associated with neuroinflammation within the NTS. The expression of angiotensin-converting enzyme and neuroinflammatory components, but not AT1R, in the NTS was reduced by AT2R overexpression in this site. Based on these data, AT1R and AT2R in the NTS are differentially involved in the cardiovascular changes induced by a HFD. Chronic inflammation and changes in the RAS in the NTS may also account for the cardiovascular responses observed in HFD-fed rats.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Presión Arterial/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Núcleo Solitario/metabolismo , Animales , Presión Arterial/fisiología , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Dieta Alta en Grasa , Masculino , Ratas , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/fisiología , Núcleo Solitario/efectos de los fármacos
5.
Aging Cell ; 18(3): e12931, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30854802

RESUMEN

Aging leads to increased cellular senescence and is associated with decreased potency of tissue-specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32-86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A , SA-ß-gal, DNA damage γH2AX, telomere length, senescence-associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK-ATTAC or wild-type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67-, EdU-positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.


Asunto(s)
Enfermedades Cardiovasculares/patología , Senescencia Celular , Corazón/fisiopatología , Regeneración , Células Madre/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Humanos , Ratones , Persona de Mediana Edad , Fenotipo
6.
Neuropeptides ; 60: 29-36, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27469059

RESUMEN

The aim of this study was to investigate the physiological effects of increased angiotensin II type 2 receptor (AT2R) expression in the solitary-vagal complex (nucleus of the solitary tract/dorsal motor nucleus of the vagus; NTS/DVM) on baroreflex function in non-anaesthetised normotensive (NT) and spontaneously hypertensive rats (SHR). Ten week old NT Holtzman and SHR were microinjected with either an adeno-associated virus expressing AT2R (AAV2-CBA-AT2R) or enhanced green fluorescent protein (control; AAV2-CBA-eGFP) into the NTS/DVM. Baroreflex and telemetry recordings were performed on four experimental groups: 1) NTeGFP, 2) NTAT2R, 3) SHReGFP and 4) SHRAT2R (n=4-7/group). Following in-vivo experimental procedures, brains were harvested for gene expression analysis. Impaired bradycardia in SHReGFP was restored in SHR rats overexpressing AT2R in the NTS/DMV. mRNA levels of angiotensin converting enzyme decreased and angiotensin converting enzyme 2 increased in the NTS/DMV of SHRAT2R compared to SHReGFP. Increased levels of pro-inflammatory cytokine mRNA levels in the SHReGFP group also decreased in the SHRAT2R group. AT2R overexpression did not elicit any significant change in mean arterial pressure (MAP) in all groups from baseline to 4weeks post viral transfection. Both SHReGFP and SHRAT2R showed a significant elevation in MAP compared to the NTeGFP and NTAT2R groups. Increased AT2R expression within the NTS/DMV of SHR was effective at improving baroreflex function but not MAP. We propose possible mediators involved in improving baroreflex are in the ANG II/ACE2 axis, suggesting a potential beneficial modulatory effect of AT2R overexpression in the NTS/DMV of neurogenic hypertensive rats.


Asunto(s)
Barorreflejo/genética , Receptor de Angiotensina Tipo 2/genética , Núcleo Solitario/metabolismo , Nervio Vago/metabolismo , Animales , Presión Sanguínea/genética , Frecuencia Cardíaca/genética , Ratas , Ratas Endogámicas SHR , Receptor de Angiotensina Tipo 2/metabolismo , Telemetría
7.
Int J Cardiol ; 220: 149-54, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27379917

RESUMEN

BACKGROUND: A new post-myocardial infarction (MI) therapy is injection of high-water-content polymeric biomaterial gels (hydrogels) into damaged myocardium to modulate cardiac negative remodeling and preserve heart function. METHODS: We investigated the therapeutic potential of a novel gelatinized alginate hydrogel with a unique microstructure of uniform capillary-like channels (termed Capgel). Shortly (48h) after induced anterior MI, Sprague Dawley rats received intramyocardial injection of Capgel directly into the antero-septal wall at the infarct border zone (n=12) or no injection (n=10, controls). Echocardiograms were performed at 48h (week 0) and 4weeks (week 4) to evaluate left ventricular function. RESULTS: Echocardiograms showed 27% improvement of left ventricular systolic function over time with gel injection: fractional shortening increased from 26±3% at week 0 to 33±2% at week 4 (p=0.001). Capgel was present at the injection site after 4weeks, but was minimal at 8weeks. The remaining gel was heavily populated by CD68(+) macrophages with CD206(+) clusters and blood vessels. An in vitro experiment was performed to assess Angiotensin-(1-7) released from Capgel. Angiotensin-(1-7) was released from the Capgel in a sustained manner for 90days. CONCLUSIONS: Use of Capgel, a degradable, bioactive hydrogel composed of gelatinized capillary-alginate gel, appears safe for intramyocardial injection, is associated with improved left ventricular function after MI in rats, and may provide a long-term supply of Angiotensin-(1-7).


Asunto(s)
Alginatos , Angiotensina I , Infarto del Miocardio , Fragmentos de Péptidos , Función Ventricular Izquierda/fisiología , Remodelación Ventricular/efectos de los fármacos , Alginatos/química , Alginatos/farmacología , Angiotensina I/química , Angiotensina I/farmacología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Modelos Animales de Enfermedad , Ecocardiografía/métodos , Gelatina/farmacología , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Hidrogeles/farmacología , Inyecciones Intralesiones/métodos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA