Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Cell Biol ; 7(12): 1224-31, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16284624

RESUMEN

In contrast to animal and fungal cells, green plant cells contain one or multiple chloroplasts, the organelle(s) in which photosynthetic reactions take place. Chloroplasts are believed to have originated from an endosymbiotic event and contain DNA that codes for some of their proteins. Most chloroplast proteins are encoded by the nuclear genome and imported with the help of sorting signals that are intrinsic parts of the polypeptides. Here, we show that a chloroplast-located protein in higher plants takes an alternative route through the secretory pathway, and becomes N-glycosylated before entering the chloroplast.


Asunto(s)
Arabidopsis/ultraestructura , Cloroplastos/metabolismo , Transporte de Proteínas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Anhidrasas Carbónicas/genética , Vesículas Citoplasmáticas/metabolismo , Glicosilación , Proteínas Fluorescentes Verdes/genética , Microscopía Fluorescente , Señales de Clasificación de Proteína , Transfección
2.
Methods Mol Biol ; 372: 297-314, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18314735

RESUMEN

In plants, the majority of mitochondrial and chloroplast proteins are nuclear encoded, synthesized on cytosolic polyribosomes, and then imported into the organelle. Most of the nuclear encoded precursor proteins contain an N-terminal extension called signal or targeting peptide that directs the protein to the correct organelle. Here, we describe in vitro and in vivo methods to study mitochondrial protein import. In a common single-organelle in vitro import procedure, transcribed/translated precursor proteins are imported into isolated mitochondria. A novel semi-in vivo system for simultaneous import of precursor proteins into isolated mitochondria and chloroplasts, called a dual-import system, is superior to the single-import system as it abolishes mistargeting of chloroplast precursors into mitochondria as observed in a single-organelle import system. Precursor proteins can also be imported into the organelles in vivo using an intact cellular system. In vivo approaches include import of transiently expressed fusion constructs containing a targeting peptide or a precursor protein fused to a reporter gene, most commonly the green fluorescence protein in protoplasts or in an Agrobacterium-mediated system in intact tobacco leaves.


Asunto(s)
Mitocondrias/metabolismo , Biología Molecular/métodos , Plantas/metabolismo , Cloroplastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Solanum tuberosum/metabolismo , Spinacia oleracea/metabolismo
3.
Methods Mol Biol ; 390: 131-50, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17951685

RESUMEN

Plant mitochondria contain about 1000 proteins, 90-99% of which in different plant species are nuclear encoded, synthesized on cytosolic polyribosomes, and imported into the organelle. Most of the nuclear-encoded proteins are synthesized as precursors containing an N-terminal extension called a presequence or targeting peptide that directs the protein to the mitochondria. Here we describe in vitro and in vivo methods to study mitochondrial protein import in plants. In vitro synthesized precursor proteins can be imported in vitro into isolated mitochondria (single organelle import). However, missorting of chloroplast precursors in vitro into isolated mitochondria has been observed. A novel dual import system for simultaneous import of proteins into isolated mitochondria and chloroplasts followed by reisolation of the organelles is superior over the single import system as it abolishes the mistargeting. Precursor proteins can also be imported into the mitochondria in vivo using an intact cellular system. In vivo approaches include import of transiently expressed fusion constructs containing a presequence or a full-length precursor protein fused to a reporter gene, most commonly the green fluorescence protein (GFP) in protoplasts or in an Agrobacterium-mediated system in intact tobacco leaves.


Asunto(s)
Mitocondrias/metabolismo , Biología Molecular/métodos , Plantas/metabolismo , Proteínas/metabolismo , Cloroplastos/metabolismo , Electroporación , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Modelos Biológicos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Solanum tuberosum/metabolismo , Spinacia oleracea/metabolismo
4.
J Mol Biol ; 324(4): 577-85, 2002 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-12460562

RESUMEN

Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.


Asunto(s)
Glutatión Reductasa/química , Glutatión Reductasa/metabolismo , Pisum sativum/enzimología , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Antibacterianos/farmacología , Cloroplastos/enzimología , Cloroplastos/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/efectos de los fármacos , Precursores Enzimáticos/metabolismo , Glutatión Reductasa/genética , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación , Pisum sativum/citología , Pisum sativum/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Hojas de la Planta/citología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Eliminación de Secuencia , Glycine max/citología , Glycine max/enzimología , Glycine max/metabolismo , Spinacia oleracea/citología , Valinomicina/farmacología , Peptidasa de Procesamiento Mitocondrial
5.
J Mol Biol ; 343(3): 639-47, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15465051

RESUMEN

Pea glutathione reductase (GR) is dually targeted to mitochondria and chloroplasts by means of an N-terminal signal peptide of 60 amino acid residues. After import, the signal peptide is cleaved off by the mitochondrial processing peptidase (MPP) in mitochondria and by the stromal processing peptidase (SPP) in chloroplasts. Here, we have investigated determinants for processing of the dual targeting signal peptide of GR by MPP and SPP to examine if there is separate or universal information recognised by both processing peptidases. Removal of 30 N-terminal amino acid residues of the signal peptide (GRDelta1-30) greatly stimulated processing activity by both MPP and SPP, whereas constructs with a deletion of an additional ten amino acid residues (GRDelta1-40) and deletion of 22 amino acid residues in the middle of the GR signal sequence (GRDelta30-52) could be cleaved by SPP but not by MPP. Numerous single mutations of amino acid residues in proximity of the cleavage site did not affect processing by SPP, whereas mutations within two amino acid residues on either side of the processing site had inhibitory effect on processing by MPP with a nearly complete inhibition for mutations at position -1. Mutation of positively charged residues in the C-terminal half of the GR targeting peptide inhibited processing by MPP but not by SPP. An inhibitory effect on SPP was detected only when double and triple mutations were introduced upstream of the cleavage site. These results indicate that: (i) recognition of processing site on a dual targeted GR precursor differs between MPP and SPP; (ii) the GR targeting signal has similar determinants for processing by MPP as signals targeting only to mitochondria; and (iii) processing by SPP shows a low level of sensitivity to single mutations on targeting peptide and likely involves recognition of the physiochemical properties of the sequence in the vicinity of cleavage rather than a requirement for specific amino acid residues.


Asunto(s)
Cloroplastos/enzimología , Glutatión Reductasa/metabolismo , Mitocondrias/enzimología , Proteínas de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Glutatión Reductasa/química , Glutatión Reductasa/genética , Metaloendopeptidasas/metabolismo , Datos de Secuencia Molecular , Pisum sativum/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Señales de Clasificación de Proteína , Alineación de Secuencia , Peptidasa de Procesamiento Mitocondrial
6.
FEBS Lett ; 547(1-3): 125-30, 2003 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-12860399

RESUMEN

The impact of various environmental stresses (drought, chilling or herbicide treatment) on the capacity of plant mitochondria to import precursor proteins was investigated. Drought treatment stimulated import and processing of various precursor proteins via the general import pathway. The stimulatory effect of drought on the general import pathway was due to an increased rate of import, was accompanied by an increased rate of processing, and could be attributed to the presequence of the precursor protein. Interestingly, drought decreased the import of the F(A)d subunit of ATP synthase suggesting a bypass of the point of stimulation during import of this precursor. Both chilling and herbicide treatment of plants, on the other hand, caused inhibition of import with all precursors tested. No decrease in processing of imported proteins was observed by these stress treatments. Western analysis of several mitochondrial proteins indicated that the steady-state level of several mitochondrial components, including the TOM20 receptor and the core subunits of the cytochrome bc(1) complex responsible for processing, remained largely unchanged. Thus environmental stresses differentially affect import of precursor proteins in a complicated manner dependent on the import pathway utilised.


Asunto(s)
Cloroplastos/metabolismo , Herbicidas/farmacología , Mitocondrias/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/efectos de los fármacos , Frío , Diquat/farmacología , Desastres , Ambiente , Cinética , Paraquat/farmacología , Pisum sativum/efectos de los fármacos , Proteínas de Plantas/efectos de los fármacos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Tiempo (Meteorología)
7.
Plant Physiol ; 138(4): 2134-44, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16040655

RESUMEN

The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.


Asunto(s)
Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Solanum tuberosum/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Transporte de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal
8.
Plant J ; 30(2): 213-20, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12000457

RESUMEN

Most chloroplast and mitochondrial precursor proteins are targeted specifically to either chloroplasts or mitochondria. However, there is a group of proteins that are dual targeted to both organelles. We have developed a novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The mitochondrial precursor of alternative oxidase, AOX was specifically targeted only to mitochondria. The chloroplastic precursor of small subunit of pea ribulose bisphosphate carboxylase/oxygenase, Rubisco, was mistargeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual import system. The dual targeted glutathione reductase GR precursor was targeted to both mitochondria and chloroplasts in both systems. The GR pre-sequence could support import of the mature Rubisco protein into mitochondria and chloroplasts in the single import system but only into chloroplasts in the dual import system. Although the GR pre-sequence could support import of the mature portion of the mitochondrial FAd subunit of the ATP synthase into mitochondria and chloroplasts, mature AOX protein was only imported into mitochondria under the control of the GR pre-sequence in both systems. These results show that the novel dual import system is superior to the single import system as it abolishes mistargeting of chloroplast precursors into pea mitochondria observed in a single organelle import system. The results clearly show that although the GR pre-sequence has dual targeting ability, this ability is dependent on the nature of the mature protein.


Asunto(s)
Cloroplastos/metabolismo , Mitocondrias/metabolismo , Precursores de Proteínas/metabolismo , Western Blotting , Cloroplastos/enzimología , Glutatión Reductasa/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales , Oxidorreductasas/metabolismo , Pisum sativum/citología , Pisum sativum/enzimología , Pisum sativum/metabolismo , Proteínas de Plantas , Precursores de Proteínas/química , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Transporte de Proteínas , Ribulosa-Bifosfato Carboxilasa/metabolismo , Glycine max/citología , Glycine max/enzimología , Glycine max/metabolismo , Especificidad por Sustrato
9.
Plant Mol Biol ; 53(3): 341-56, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14750523

RESUMEN

We investigated the dual targeting signal of pea glutathione reductase (GR) that had been previously shown to be capable of targeting the passenger protein phosphinothricin acetyl transferase to mitochondria and chloroplasts in vivo. We confirmed that GR was imported into mitochondria and chloroplasts in vitro. Rupture of the outer mitochondrial membrane after the import assay indicated that GR was imported into both the intermembrane space and the matrix. Changing positive and hydrophobic residues in the targeting signal we investigated if dual targeting of GR was due to an overlapping or separate signal. Overall single mutations had a greater effect on mitochondrial import compared to chloroplasts, especially those on positive residues. Precursors containing both positive and hydrophobic residue mutations (double mutants) indicated that there might be some redundancy in targeting information for chloroplastic import as double mutants had a greater effect than predicted from the single mutants. Fusion of the targeting signal to the green fluorescent protein (GFP) followed by transient transformation indicated that this signal was only capable of targeting this passenger protein to plastids. Additionally, fusion of the complete coding sequence of GR to GFP also resulted in an exclusive chloroplastic localization. Mutations in the targeting signal that reduced import into plastids in vitro also displayed altered patterns of GFP localizations in vivo. These results indicate that some residues in the signal for dual localisation of GR play a role in both mitochondrial and chloroplastic import, and thus the signal is overlapping.


Asunto(s)
Glutatión Reductasa/metabolismo , Pisum sativum/enzimología , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos , Cloroplastos/metabolismo , Glutatión Reductasa/genética , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación , Pisum sativum/genética , Pisum sativum/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Glycine max/citología , Glycine max/genética , Glycine max/metabolismo , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo
10.
Plant Mol Biol ; 52(2): 259-71, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12856934

RESUMEN

Mitochondrial precursor proteins synthesized in rabbit reticulocyte lysate (RRL) are readily imported into mitochondria, whereas the same precursors synthesized in wheat germ extract (WGE) fail to be imported. We have investigated factors that render import incompetence from WGE. A precursor that does not require addition of extramitochondrial ATP for import, the F(A)d ATP synthase subunit, is imported from WGE. Import of chimeric constructs between precursors of the F(A)d protein and alternative oxidase (AOX) with switched presequences revealed that the mature domain of the F(A)d precursor defines the import competence in WGE as only the construct containing the presequence of AOX and mature portion of F(A)d (pAOX-mF(A)d) could be imported. Import competence of F(A)d and pAOX-mF(A)d correlated with solubility of these precursors in WGE, however, solubilization of import-incompetent precursors with urea did not restore import competence. Addition of RRL to WGE-synthesized precursors did not stimulate import but addition of WGE to the RRL-synthesized precursors or to the over-expressed mitochondrial precursor derived from the F1beta ATP synthase precursor inhibited import into mitochondria. The dual-targeted glutathione reductase precursor synthesized in WGE was imported into chloroplasts, but not into mitochondria. Antibodies against the 14-3-3 guidance complex characterized for chloroplast targeting were able to immunoprecipitate all of the precursors tested except the F(A)d ATP synthase precursor. Our results point to the conclusion that the import incompetence of WGE-synthesized mitochondrial precursors is not presequence dependent and is a result of interaction of WGE inhibitory factors with the mature portion of precursor proteins.


Asunto(s)
Proteínas Mitocondriales/genética , Biosíntesis de Proteínas/genética , Transcripción Genética/genética , Proteínas 14-3-3 , Animales , Sistema Libre de Células/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Extractos Vegetales/genética , Extractos Vegetales/farmacología , Pruebas de Precipitina , Unión Proteica , Pliegue de Proteína , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Conejos , Reticulocitos/metabolismo , Solubilidad , Triticum/genética , Tirosina 3-Monooxigenasa/metabolismo
11.
Plant Physiol ; 133(4): 1968-78, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14630960

RESUMEN

Plant mitochondria contain non-phosphorylating NAD(P)H dehydrogenases (DHs) that are not found in animal mitochondria. The physiological function, substrate specificity, and location of enzymes within this family have yet to be conclusively determined. We have linked genome sequence information to protein and biochemical data to identify that At1g07180 (SwissProt Q8GWA1) from the Arabidopsis Genome Initiative database encodes AtNDI1, an internal NAD(P)H DH in Arabidopsis mitochondria. Three lines of evidence are presented: (a). The predicted protein sequence of AtNDI1 has high homology with other designated NAD(P)H DHs from microorganisms, (b). the capacity for matrix NAD(P)H oxidation via the rotenone-insensitive pathway is significantly reduced in the Atndi1 mutant plant line, and (c). the in vitro translation product of AtNDI1 is imported into isolated mitochondria and located on the inside of the inner membrane.


Asunto(s)
Arabidopsis/enzimología , FMN Reductasa/genética , FMN Reductasa/metabolismo , Mitocondrias/enzimología , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , FMN Reductasa/química , Mitocondrias/genética , Datos de Secuencia Molecular , NADP/metabolismo , Oxidación-Reducción , Reacción en Cadena de la Polimerasa , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rotenona/farmacología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA