Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350967

RESUMEN

The spatiotemporal cellular distribution of lysosomes depends on active transport mainly driven by microtubule motors such as kinesins and dynein. Different protein complexes attach these molecular motors to their vesicular cargo. TMEM55B (also known as PIP4P1), as an integral lysosomal membrane protein, is a component of such a complex that mediates the retrograde transport of lysosomes by establishing interactions with the cytosolic scaffold protein JIP4 (also known as SPAG9) and dynein-dynactin. Here, we show that TMEM55B and its paralog TMEM55A (PIP4P2) are S-palmitoylated proteins that are lipidated at multiple cysteine residues. Mutation of all cysteines in TMEM55B prevents S-palmitoylation and causes retention of the mutated protein in the Golgi. Consequently, non-palmitoylated TMEM55B is no longer able to modulate lysosomal positioning and the perinuclear clustering of lysosomes. Additional mutagenesis of the dileucine-based lysosomal sorting motif in non-palmitoylated TMEM55B leads to partial missorting to the plasma membrane instead of retention in the Golgi, implicating a direct effect of S-palmitoylation on the adaptor protein-dependent sorting of TMEM55B. Our data suggest a critical role for S-palmitoylation in the trafficking of TMEM55B and TMEM55B-dependent lysosomal positioning.


Asunto(s)
Lipoilación , Lisosomas , Aparato de Golgi/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Transporte de Proteínas
2.
Hum Mol Genet ; 26(20): 3960-3972, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016854

RESUMEN

Hypomorphic mutations in the DNA repair enzyme RNase H2 cause the neuroinflammatory autoimmune disorder Aicardi-Goutières syndrome (AGS). Endogenous nucleic acids are believed to accumulate in patient cells and instigate pathogenic type I interferon expression. However, the underlying nucleic acid species amassing in the absence of RNase H2 has not been established yet. Here, we report that murine RNase H2 knockout cells accumulated cytosolic DNA aggregates virtually indistinguishable from micronuclei. RNase H2-dependent micronuclei were surrounded by nuclear lamina and most of them contained damaged DNA. Importantly, they induced expression of interferon-stimulated genes (ISGs) and co-localized with the nucleic acid sensor cGAS. Moreover, micronuclei associated with RNase H2 deficiency were cleared by autophagy. Consequently, induction of autophagy by pharmacological mTOR inhibition resulted in a significant reduction of cytosolic DNA and the accompanied interferon signature. Autophagy induction might therefore represent a viable therapeutic option for RNase H2-dependent disease. Endogenous retroelements have previously been proposed as a source of self-nucleic acids triggering inappropriate activation of the immune system in AGS. We used human RNase H2-knockout cells generated by CRISPR/Cas9 to investigate the impact of RNase H2 on retroelement propagation. Surprisingly, replication of LINE-1 and Alu elements was blunted in cells lacking RNase H2, establishing RNase H2 as essential host factor for the mobilisation of endogenous retrotransposons.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Micronúcleo Germinal/enzimología , Malformaciones del Sistema Nervioso/enzimología , Ribonucleasa H/deficiencia , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Autofagia/genética , ADN/genética , Daño del ADN , Replicación del ADN , Ratones , Ratones Noqueados , Micronúcleo Germinal/genética , Micronúcleo Germinal/inmunología , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
3.
FEBS J ; 288(14): 4168-4182, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33067905

RESUMEN

Lysosomes are degradative organelles in eukaryotic cells mediating the hydrolytic catabolism of various macromolecules to small basic building blocks. These low-molecular-weight metabolites are transported across the lysosomal membrane and reused in the cytoplasm and other organelles for biosynthetic pathways. Even though in the past 20 years our understanding of the lysosomal membrane regarding various transporters, other integral and peripheral membrane proteins, the lipid composition, but also its turnover has dramatically improved, there are still many unresolved questions concerning key aspects of the function of the lysosomal membrane. These include a possible function of lysosomes as a cellular storage compartment, yet unidentified transporters mediating the export such as various amino acids, mechanisms mediating the transport of lysosomal membrane proteins from the Golgi apparatus to lysosomes, and the turnover of lysosomal membrane proteins. Here, we review the current knowledge about the lysosomal membrane and identify some of the open questions that need to be solved in the future for a comprehensive and complete understanding of how lysosomes communicate with other organelles, cellular processes, and pathways.


Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Orgánulos/metabolismo , Animales , Humanos
4.
Oncotarget ; 8(27): 43635-43652, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28504966

RESUMEN

The Transmembrane protein 192 (TMEM192) is a lysosomal/late endosomal protein initially discovered by organellar proteomics. TMEM192 exhibits four transmembrane segments with cytosolic N- and C-termini and forms homodimers. Devoid of significant homologies, the molecular function of TMEM192 is currently unknown. Upon TMEM192 knockdown in hepatoma cells, a dysregulation of autophagy and increased apoptosis were reported. Here, we aimed to define the physiological role of TMEM192 by analysing consequences of TMEM192 ablation in mice. Therefore, we compared the biochemical properties of murine TMEM192 to those of the human orthologue. We reveal lysosomal residence of murine TMEM192 and demonstrate ubiquitous tissue expression. In brain, TMEM192 expression was pronounced in the hippocampus but also present in the cortex and cerebellum, as analysed based on a lacZ reporter allele. Murine TMEM192 undergoes proteolytic processing in a tissue-specific manner. Thereby, a 17 kDa fragment is generated which was detected in most murine tissues except liver. TMEM192 processing occurs after lysosomal targeting by pH-dependent lysosomal proteases. TMEM192-/- murine embryonic fibroblasts (MEFs) exhibited a regular morphology of endo-/lysosomes and were capable of performing autophagy and lysosomal exocytosis. Histopathological, ultrastructural and biochemical analyses of all major tissues of TMEM192-/- mice demonstrated normal lysosomal functions without apparent lysosomal storage. Furthermore, the abundance of the major immune cells was comparable in TMEM192-/- and wild type mice. Based on this, we conclude that under basal conditions in vivo the loss of TMEM192 can be efficiently compensated by alternative pathways. Further studies will be required to decipher its molecular function.


Asunto(s)
Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Fibroblastos , Expresión Génica , Técnicas de Inactivación de Genes , Glicosilación , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteolisis , Bazo/metabolismo , Bazo/patología , Ubiquitinación
5.
Autophagy ; 13(4): 670-685, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28129027

RESUMEN

The vacuolar-type H+-translocating ATPase (v-H+-ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H+-ATPase and MTORC1, we destablilized v-H+-ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H+-ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H+-ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H+-ATPase-mediated regulation of MTORC1.


Asunto(s)
Autofagia , Hígado/enzimología , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , Vacuolas/enzimología , Aminoácidos/farmacología , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos/citología , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/ultraestructura , Lisosomas/efectos de los fármacos , Ratones Noqueados , ATPasas de Translocación de Protón/deficiencia , Receptores de Superficie Celular/deficiencia , Vacuolas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA