Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chem Rev ; 123(6): 2832-2901, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36853077

RESUMEN

Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Ingeniería de Proteínas , Ensayos Analíticos de Alto Rendimiento/métodos , Ingeniería de Proteínas/métodos
2.
Adv Synth Catal ; 365(1): 37-42, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37082351

RESUMEN

Various widely applied compounds contain cyano-groups, and this functional group serves as a chemical handle for a whole range of different reactions. We report a cyanide free chemoenzymatic cascade for nitrile synthesis. The reaction pathway starts with a reduction of carboxylic acid to aldehyde by carboxylate reductase enzymes (CARs) applied as living cell biocatalysts. The second - chemical - step includes in situ oxime formation with hydroxylamine. The final direct step from oxime to nitrile is catalyzed by aldoxime dehydratases (Oxds). With compatible combinations of a CAR and an Oxd, applied in one-pot two-step reactions, several aliphatic and aryl-aliphatic target nitriles were obtained in more than 80% conversion. Phenylacetonitrile, for example, was prepared in 78% isolated yield. This chemoenzymatic route does not require cyanide salts, toxic metals, or undesired oxidants in contrast to entirely chemical procedures.

3.
European J Org Chem ; 2021(18): 2589-2593, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262391

RESUMEN

Aldoses exist predominantly in the cyclic hemiacetal form, which is in equilibrium with the open-chain aldehyde form. The small aldehyde content hampers reactivity when chemistry addresses the carbonyl moiety. This low concentration of the available aldehyde is generally difficult to ascertain. Herein, we demonstrate a new kinetic determination of the (minute) open-chain content (OCC) of aldoses. This kinetic approach exploits the aldehyde-selectivity of 2-aminobenzamidoxime (ABAO), which furnishes a strongly UV-active adduct. Simple formation curves can be measured in a photometer or plate reader for high-throughput screening. Under pseudo-first order kinetics, these curves correlate with a prediction model yielding the relative OCC. The OCCs of all parent aldoses (pentoses and hexoses) were determined referencing against the two tetroses with exceptionally high OCCs and were in very good agreement with literature data. Additionally, the assay was extended towards higher-carbon sugars with unknown OCC and also applied to rationalise a lack of reactivity observed in a recent synthetic investigation.

4.
Chembiochem ; 21(7): 971-977, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31608538

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts, but, due to their low stability, their application in industry is hampered. Thus, there is a high demand to expand on the diversity and increase the stability of this class of enzyme. Starting from a known thermostable BVMO sequence from Thermocrispum municipale (TmCHMO), a novel BVMO from Amycolaptosis thermoflava (BVMOFlava ), which was successfully expressed in Escherichia coli BL21(DE3), was identified. The activity and stability of the purified enzyme was investigated and the substrate profile for structurally different cyclohexanones and cyclobutanones was assigned. The enzyme showed a lower activity than that of cyclohexanone monooxygenase (CHMOAcineto ) from Acinetobacter sp., as the prototype BVMO, but indicated higher kinetic stability by showing a twofold longer half-life at 30 °C. The thermodynamic stability, as represented by the melting temperature, resulted in a Tm value of 53.1 °C for BVMOFlava , which was comparable to the Tm of TmCHMO (ΔTm =1 °C) and significantly higher than the Tm value for CHMOAcineto ((ΔTm =14.6 °C)). A strong deviation between the thermodynamic and kinetic stabilities of BVMOFlava was observed; this might have a major impact on future enzyme discovery for BVMOs and their synthetic applications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Actinobacteria/enzimología , Amycolatopsis/enzimología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Biocatálisis , Estabilidad de Enzimas , Escherichia coli/metabolismo , Semivida , Concentración de Iones de Hidrógeno , Cinética , Oxigenasas de Función Mixta/clasificación , Oxigenasas de Función Mixta/genética , Filogenia , Ingeniería de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , Termodinámica
5.
Chembiochem ; 19(4): 361-368, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28980776

RESUMEN

A synthetic cascade for the transformation of primary alcohols into polyhydroxylated compounds in Escherichia coli, through the in situ preparation of cytotoxic aldehyde intermediates and subsequent aldolase-mediated C-C bond formation, has been investigated. An enzymatic toolbox consisting of alcohol dehydrogenase AlkJ from Pseudomonas putida and the dihydroxyacetone-/hydroxyacetone-accepting aldolase variant Fsa1-A129S was applied. Pathway optimization was performed at the genetic and process levels. Three different arrangements of the alkJ and fsa1-A129S genes in operon, monocistronic, and pseudo-operon configuration were tested. The last of these proved to be most beneficial with regard to bacterial growth and protein expression levels. The optimized whole-cell catalyst, combined with a refined solid-phase extraction downstream purification protocol, provides diastereomerically pure carbohydrate derivatives that can be isolated in up to 91 % yield over two reaction steps.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Carbohidratos/biosíntesis , Pseudomonas putida/enzimología , Alcohol Deshidrogenasa/genética , Biocatálisis , Carbohidratos/química , Estructura Molecular , Pseudomonas putida/crecimiento & desarrollo , Estereoisomerismo
6.
Biol Chem ; 398(1): 31-37, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27289001

RESUMEN

Nature uses the advantages of fusion proteins for multi-step reactions to facilitate the metabolism in cells as the conversion of substrates through intermediates to the final product can take place more rapidly and with less side-product formation. In a similar fashion, also for enzyme cascade reactions, the fusion of biocatalysts involved can be advantageous. In the present study, we investigated fusion of an alcohol dehydrogenase (ADH), an enoate reductase (ERED) and a Baeyer-Villiger monooxygenase (BVMO) to enable the synthesis of (chiral) lactones starting from unsaturated alcohols as substrates. The domain order and various linkers were studied to find optimal conditions with respect to expression levels and enzymatic activities. Best results were achieved for the ERED xenobiotic reductase B (XenB) from Pseudomonas putida and the cyclohexanone monooxygenase (CHMO) from Acinetobacter sp., whereas none of the ADHs studied could be fused successfully. This fusion protein together with separately supplied ADH resulted in similar reaction rates in in vivo biocatalysis reactions. After 1.5 h we could detect 40% more dihydrocarvone lactone in in vivo reactions with the fusion protein and ADH then with the single enzymes.


Asunto(s)
Lactonas/química , Lactonas/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Biocatálisis , Rhodococcus/enzimología , Estereoisomerismo
7.
Biotechnol Bioeng ; 114(8): 1670-1678, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28409822

RESUMEN

This paper describes the development of a biocatalytic process on the multi-dozen gram scale for the synthesis of a precursor to Nylon-9, a specialty polyamide. Such materials are growing in demand, but their corresponding monomers are often difficult to synthesize, giving rise to biocatalytic approaches. Here, we implemented cyclopentadecanone monooxygenase as an Escherichia coli whole-cell biocatalyst in a defined medium, together with a substrate feeding-product removal concept, and an optimized downstream processing (DSP). A previously described hazardous peracid-mediated oxidation was thus replaced with a safe and scalable protocol, using aerial oxygen as oxidant, and water as reaction solvent. The engineered process converted 42 g (0.28 mol) starting material ketone to the corresponding lactone with an isolated yield of 70% (33 g), after highly efficient DSP with 95% recovery of the converted material, translating to a volumetric yield of 8 g pure product per liter. Biotechnol. Bioeng. 2017;114: 1670-1678. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Reactores Biológicos/microbiología , Medios de Cultivo/metabolismo , Escherichia coli/fisiología , Mejoramiento Genético/métodos , Oxigenasas de Función Mixta/metabolismo , Nylons/metabolismo , Catálisis , Medios de Cultivo/química , Oxigenasas de Función Mixta/genética , Nylons/aislamiento & purificación , Oxidación-Reducción , Proyectos Piloto , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Org Biomol Chem ; 15(46): 9824-9829, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29130465

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) and evolved mutants have been shown to be excellent biocatalysts in many stereoselective Baeyer-Villiger transformations, but industrial applications are rare which is partly due to the insufficient thermostability of BVMOs under operating conditions. In the present study, the substrate scope of the recently discovered thermally stable BVMO, TmCHMO from Thermocrispum municipale, was studied. This revealed that the wild-type (WT) enzyme catalyzes the oxidation of a variety of structurally different ketones with notable activity and enantioselectivity, including the desymmetrization of 4-methylcyclohexanone (99% ee, S). In order to induce the reversal of enantioselectivity of this reaction as well as the transformations of other substrates, directed evolution based on iterative saturation mutagenesis (ISM) was applied, leading to (R)-selectivity (94% ee) without affecting the thermostability of the biocatalyst.


Asunto(s)
Oxigenasas de Función Mixta/química , Temperatura , Biocatálisis , Estabilidad de Enzimas , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
9.
Mol Syst Biol ; 11(4): 802, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25888284

RESUMEN

Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Causalidad , Ciclo Celular , Simulación por Computador , Medios de Cultivo/farmacología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Metaboloma , Modelos Biológicos , Nitrógeno/metabolismo , Probabilidad , Proteoma , ARN de Hongos/genética , Saccharomyces cerevisiae/efectos de los fármacos , Transducción de Señal
10.
Adv Synth Catal ; 358(21): 3414-3421, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27917101

RESUMEN

The enzymatic reduction of carboxylic acids is in its infancy with only a handful of biocatalysts available to this end. We have increased the spectrum of carboxylate-reducing enzymes (CARs) with the sequence of a fungal CAR from Neurospora crassa OR74A (NcCAR). NcCAR was efficiently expressed in E. coli using an autoinduction protocol at low temperature. It was purified and characterized in vitro, revealing a broad substrate acceptance, a pH optimum at pH 5.5-6.0, a Tm of 45 °C and inhibition by the co-product pyrophosphate which can be alleviated by the addition of pyrophosphatase. The synthetic utility of NcCAR was demonstrated in a whole-cell biotransformation using the Escherichia coli K-12 MG1655 RARE strain in order to suppress overreduction to undesired alcohol. The fragrance compound piperonal was prepared from piperonylic acid (30 mM) on gram scale in 92 % isolated yield in >98% purity. This corresponds to a productivity of 1.5 g/L/h.

11.
Appl Microbiol Biotechnol ; 100(15): 6585-6599, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27328941

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) are a very well-known and intensively studied class of flavin-dependent enzymes. Their substrate promiscuity, high chemo-, regio-, and enantioselectivity are prerequisites for the use in synthetic chemistry and should pave the way for successful industrial processes. Nonetheless, only a very limited number of industrial relevant transformations are known, mainly due to the lack of BVMOs stability and cofactor dependency. In this review, we focus on novel BVMO-mediated transformations, BVMOs in cascade type reactions, potential industrial applications, and how limitations have been tackled by the community. Special attention will be put on whole-cell immobilization strategies. We emphasize to bridge recent developments in fundamental research to industrial applications.


Asunto(s)
Biocatálisis , Reactores Biológicos , Oxigenasas de Función Mixta/metabolismo , Biotecnología , Oxidación-Reducción , Estereoisomerismo , Especificidad por Sustrato
12.
J Biol Chem ; 289(36): 25010-20, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25063813

RESUMEN

The evolutionary conserved TOR complex 1 (TORC1) activates cell growth in response to nutrients. In yeast, TORC1 responds to the nitrogen source via a poorly understood mechanism. Leucine, and perhaps other amino acids, activates TORC1 via the small GTPases Gtr1 and Gtr2, orthologs of the mammalian Rag GTPases. Here we investigate the activation of TORC1 by the nitrogen source and how this might be related to TORC1 activation by Gtr/Rag. The quality of the nitrogen source, as defined by its ability to promote growth and glutamine accumulation, directly correlates with its ability to activate TORC1 as measured by Sch9 phosphorylation. Preferred nitrogen sources stimulate rapid, sustained Sch9 phosphorylation and glutamine accumulation. Inhibition of glutamine synthesis reduces TORC1 activity and growth. Poor nitrogen sources stimulate rapid but transient Sch9 phosphorylation. A Gtr1 deficiency prevents the transient stimulation of TORC1 but does not affect the sustained TORC1 activity in response to good nitrogen sources. These findings suggest that the nitrogen source must be converted to glutamine, the preferred nitrogen source in yeast, to sustain TORC1 activity. Furthermore, sustained TORC1 activity is independent of Gtr/Rag. Thus, the nitrogen source and Gtr/Rag activate TORC1 via different mechanisms.


Asunto(s)
Glutamina/farmacología , Proteínas de Unión al GTP Monoméricas/metabolismo , Nitrógeno/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Compuestos de Amonio/metabolismo , Compuestos de Amonio/farmacología , Glutamina/metabolismo , Immunoblotting , Leucina/metabolismo , Leucina/farmacología , Metionina Sulfoximina/farmacología , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Nitrógeno/metabolismo , Fosforilación/efectos de los fármacos , Prolina/metabolismo , Prolina/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Factores de Transcripción/genética
13.
Bioinformatics ; 30(2): 221-7, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24297519

RESUMEN

MOTIVATION: A common problem in understanding a biochemical system is to infer its correct structure or topology. This topology consists of all relevant state variables-usually molecules and their interactions. Here we present a method called topological augmentation to infer this structure in a statistically rigorous and systematic way from prior knowledge and experimental data. RESULTS: Topological augmentation starts from a simple model that is unable to explain the experimental data and augments its topology by adding new terms that capture the experimental behavior. This process is guided by representing the uncertainty in the model topology through stochastic differential equations whose trajectories contain information about missing model parts. We first apply this semiautomatic procedure to a pharmacokinetic model. This example illustrates that a global sampling of the parameter space is critical for inferring a correct model structure. We also use our method to improve our understanding of glutamine transport in yeast. This analysis shows that transport dynamics is determined by glutamine permeases with two different kinds of kinetics. Topological augmentation can not only be applied to biochemical systems, but also to any system that can be described by ordinary differential equations. AVAILABILITY AND IMPLEMENTATION: Matlab code and examples are available at: http://www.csb.ethz.ch/tools/index


Asunto(s)
Algoritmos , Modelos Biológicos , Biología de Sistemas , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Teorema de Bayes , Tracto Gastrointestinal/efectos de los fármacos , Glutamina/metabolismo , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Farmacocinética , Saccharomyces cerevisiae/metabolismo
14.
Green Chem ; 26(3): 1338-1344, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323304

RESUMEN

Novel synthetic strategies for the production of high-value chemicals based on the 12 principles of green chemistry are highly desired. Herein, we present a proof of concept for two novel chemo-enzymatic one-pot cascades allowing for the production of valuable fragrance and flavor aldehydes. We utilized renewable phenylpropenes, such as eugenol from cloves or estragole from estragon, as starting materials. For the first strategy, Pd-catalyzed isomerization of the allylic double bond and subsequent enzyme-mediated (aromatic dioxygenase, ADO) alkene cleavage were performed to obtain the desired aldehydes. In the second route, the double bond was oxidized to the corresponding ketone via a copper-free Wacker oxidation protocol followed by enzymatic Baeyer-Villiger oxidation (phenylacetone monooxygenase from Thermobifida fusca), esterase-mediated (esterase from Pseudomonas fluorescens, PfeI) hydrolysis and subsequent oxidation of the primary alcohol (alcohol dehydrogenase from Pseudomonas putida, AlkJ) to the respective aldehyde products. Eight different phenylpropene derivatives were subjected to these reaction sequences, allowing for the synthesis of seven aldehydes in up to 55% yield after 4 reaction steps (86% for each step).

15.
Bioorg Med Chem Lett ; 23(9): 2718-20, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23535329

RESUMEN

A novel and stereoselective synthetic route towards carba-C-nucleosides was investigated applying an enantiodivergent biooxidation strategy by two different Baeyer-Villiger monooxygenases. Within only three chemo-enzymatic steps it was possible to introduce four chiral centers starting from commercially available non-chiral starting material.


Asunto(s)
Carba-azúcares/química , Oxigenasas de Función Mixta/metabolismo , Nucleósidos/química , Catálisis , Cetonas/química , Oxigenasas de Función Mixta/genética , Nucleósidos/síntesis química , Tetróxido de Osmio/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Estereoisomerismo
16.
Flavour Fragr J ; 38(4): 221-242, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38505272

RESUMEN

Many aldehydes are volatile compounds with distinct and characteristic olfactory properties. The aldehydic functional group is reactive and, as such, an invaluable chemical multi-tool to make all sorts of products. Owing to the reactivity, the selective synthesis of aldehydic is a challenging task. Nature has evolved a number of enzymatic reactions to produce aldehydes, and this review provides an overview of aldehyde-forming reactions in biological systems and beyond. Whereas some of these biotransformations are still in their infancy in terms of synthetic applicability, others are developed to an extent that allows their implementation as industrial biocatalysts.

17.
Enzyme Microb Technol ; 164: 110187, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610228

RESUMEN

The aim of this work was to map the sequence space of aldoxime dehydratases (Oxds) as enzymes with great potential for nitrile synthesis. Microbes contain an abundance of putative Oxds but fewer than ten Oxds were characterized in total and only two in fungi. In this work, we prepared and characterized a new Oxd (protein gb|EEU37245.1 named OxdFv) from Fusarium vanettenii 77-13-4. OxdFv is distant from the characterized Oxds with a maximum of 36% identity. Moreover, the canonical Oxd catalytic triad RSH is replaced by R141-E187-E303 in OxdFv. R141A and E187A mutants did not show significant activities, but mutant E303A showed a comparable activity as the wild-type enzyme. According to native mass spectrometry, OxdFv contained almost 1 mol of heme per 1 mol of protein, and was composed of approximately 88% monomer (41.8 kDa) and 12% dimer. A major advantage of this enzyme is its considerable activity under aerobic conditions (25.0 ± 4.3 U/mg for E,Z-phenylacetaldoxime at pH 9.0 and 55 °C). Addition of sodium dithionite (reducing agent) and Fe2+ was required for this activity. OxdFv favored (aryl)aliphatic aldoximes over aromatic aldoximes. Substrate docking in the homology model of OxdFv showed a similar substrate specificity. We conclude that OxdFv is the first characterized Oxd of the REE type.


Asunto(s)
Fusarium , Fusarium/genética , Hidroliasas/genética , Hidroliasas/metabolismo , Catálisis , Oximas/metabolismo
18.
Tetrahedron ; 68(37): 7619-7623, 2012 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-22991485

RESUMEN

Shewanella yellow enzyme (SYE-4), a novel recombinant enoate reductase, was screened against a variety of different substrates bearing an activated double bond, such as unsaturated cyclic ketones, diesters, and substituted imides. Dimethyl- and ethyl esters of 2-methylmaleic acid were selectively reduced to (R)-configured succinic acid derivatives and various N-substituted maleimides furnished the desired (R)-products in up to >99% enantiomeric excess. Naturally occurring (+)-carvone was selectively reduced to (-)-cis-dihydrocarvone and (-)-carvone was converted to the diastereomeric product, respectively. Overall SYE-4 proved to be a useful biocatalyst for the selective reduction of activated C = C double bonds and complements the pool of synthetic valuable enoate reductases.

19.
Catal Sci Technol ; 12(1): 62-66, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35126993

RESUMEN

We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation. The final step to the nitrile is catalyzed by aldoxime dehydratase (Oxd). Full conversions of phenylacetic acid and hexanoic acid were achieved in a two-phase mode.

20.
ACS Catal ; 12(19): 11761-11766, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36249873

RESUMEN

The typically low thermodynamic and kinetic stability of enzymes is a bottleneck for their application in industrial synthesis. Baeyer-Villiger monooxygenases, which oxidize ketones to lactones using aerial oxygen, among other activities, suffer particularly from these instabilities. Previous efforts in protein engineering have increased thermodynamic stability but at the price of decreased activity. Here, we solved this trade-off by introducing mutations in a cyclohexanone monooxygenase from Acinetobacter sp., guided by a combination of rational and structure-guided consensus approaches. We developed variants with improved activity (1.5- to 2.5-fold) and increased thermodynamic (+5 °C T m) and kinetic stability (8-fold). Our analysis revealed a crucial position in the cofactor binding domain, responsible for an 11-fold increase in affinity to the flavin cofactor, and explained using MD simulations. This gain in affinity was compatible with other mutations. While our study focused on a particular model enzyme, previous studies indicate that these findings are plausibly applicable to other BVMOs, and possibly to other flavin-dependent monooxygenases. These new design principles can inform the development of industrially robust, flavin-dependent biocatalysts for various oxidations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA