Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Bioconjug Chem ; 34(8): 1398-1406, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37534797

RESUMEN

Small molecule fluorescent probes that bind selectively to plant cell wall polysaccharides have been instrumental in elucidating the localization and function of these glycans. Arabinogalactan proteins (AGPs) are cell wall proteoglycans implicated in essential functions such as cell signaling, plant growth, and programmed cell death. There is currently no small molecule probe capable of fluorescently labeling AGPs. The Yariv reagents are the only small molecules that bind AGPs, and have been used to study AGP function and isolate AGPs via precipitation of an AGP-Yariv complex. However, the Yariv reagents are not fluorescent, rendering them ineffective for localization studies using fluorescence microscopy. A fluorescent version of a Yariv reagent that is capable of both binding as well as imaging AGPs would provide a powerful tool for studying AGPs in planta. Herein, we describe the synthesis of an azido analog of the Yariv reagent that can be further functionalized with a fluorophore to provide a glycoconjugate that binds AGPs and is fluorescent. We show that the modified reagent binds gum arabic in in vitro binding assays when used in conjunction with the ßGlcYariv reagent. Fluorescent imaging of AGPs in fixed maize leaf tissue enables localization of AGPs to cell walls in the leaf. Significantly, imaging can also be carried out using fresh tissue. This represents the first small molecule probe that can be used to visualize AGPs using fluorescence microscopy.


Asunto(s)
Glucósidos , Floroglucinol , Glucósidos/metabolismo , Floroglucinol/metabolismo , Membrana Celular/metabolismo , Microscopía Fluorescente
2.
Chembiochem ; 23(17): e202200372, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35785462

RESUMEN

During viral cell entry, the spike protein of SARS-CoV-2 binds to the α1-helix motif of human angiotensin-converting enzyme 2 (ACE2). Thus, alpha-helical peptides mimicking this motif may serve as inhibitors of viral cell entry. For this purpose, we employed the rigidified diproline-derived module ProM-5 to induce α-helicity in short peptide sequences inspired by the ACE2 α1-helix. Starting with Ac-QAKTFLDKFNHEAEDLFYQ-NH2 as a relevant section of α1, a series of peptides, N-capped with either Ac-ßHAsp-[ProM-5] or Ac-ßHAsp-PP, were prepared and their α-helicities were investigated. While ProM-5 clearly showed a pronounced effect, an even increased degree of helicity (up to 63 %) was observed in sequences in which non-binding amino acids were replaced by alanine. The binding affinities of the peptides towards the spike protein, as determined by means of microscale thermophoresis (MST), revealed only a subtle influence of the α-helical content and, noteworthy, led to the identification of an Ac-ßHAsp-PP-capped peptide displaying a very strong binding affinity (KD =62 nM).


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Humanos , Péptidos/química , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
3.
Biol Chem ; 403(5-6): 615-624, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35357791

RESUMEN

The pathogenic agent of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters into human cells through the interaction between the receptor binding domain (RBD) of its spike glycoprotein and the angiotensin-converting enzyme 2 (ACE2) receptor. Efforts have been made towards finding antivirals that block this interaction, therefore preventing infection. Here, we determined the binding affinity of ACE2-derived peptides to the RBD of SARS-CoV-2 experimentally and performed MD simulations in order to understand key characteristics of their interaction. One of the peptides, p6, binds to the RBD of SARS-CoV-2 with nM affinity. Although the ACE2-derived peptides retain conformational flexibility when bound to SARS-CoV-2 RBD, we identified residues T27 and K353 as critical anchors mediating the interaction. New ACE2-derived peptides were developed based on the p6-RBD interface analysis and expecting the native conformation of the ACE2 to be maintained. Furthermore, we found a correlation between the helicity in trifluoroethanol and the binding affinity to RBD of the new peptides. Under the hypothesis that the conservation of peptide secondary structure is decisive to the binding affinity, we developed a cyclized version of p6 which had more helicity than p6 and approximately half of its KD value.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Péptidos/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA