Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(33): 13003-13007, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31381855

RESUMEN

Incorporating open metal sites (OMS) into metal-organic frameworks allows design of well-defined binding sites for selective molecular adsorption, which has a profound impact on catalysis and separations. We demonstrate that Cu(I) sites incorporated into MFU-4l preferentially adsorb olefins over paraffins. Density functional theory (DFT) calculations show that the OMS are independent, with no dependence of binding energy on olefin loading up to one olefin per Cu(I). Experimentally, increasing Cu(I) loading increased olefin uptake without affecting the binding energy, as predicted by DFT and confirmed by temperature-programmed desorption. The potential of this material for olefin/paraffin separation under ambient conditions was investigated by gas adsorption and column breakthrough experiments for an equimolar ratio of olefin/paraffin. High-grade propylene and ethylene (>99.999%) can be generated using temperature-concentration swing recycling from a Cu(I)-MFU-4l packed column with no measurable paraffin breakthrough.

2.
ChemSusChem ; 15(1): e202102217, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34725931

RESUMEN

Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with µ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Amoníaco , Sitios de Unión
3.
J Phys Chem Lett ; 12(2): 892-899, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33434023

RESUMEN

Thermodynamic and kinetic properties of molecular adsorption and transport in metal-organic frameworks (MOFs) are crucially important for many applications, including gas adsorption, filtration, and remediation of harmful chemicals. Using the in situ 1H nuclear magnetic resonance (NMR) isotherm technique, we measured macroscopic thermodynamic and kinetic properties such as isotherms and rates of mass transfer while simultaneously obtaining microscopic information revealed by adsorbed molecules via NMR. Upon investigating isopropyl alcohol adsorption in MOF UiO-66 by in situ NMR, we obtained separate isotherms for molecules adsorbed at distinct environments exhibiting distinct NMR characteristics. A mechanistic view of the adsorption process is obtained by correlating such resolved isotherms with the cage structure effect on the nucleus-independent chemical shift, molecular dynamics such as the crowding effect at high loading levels, and the loading level dependence of the mass transfer rate as measured by NMR and elucidated by classical Monte Carlo simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA