Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458076

RESUMEN

Recently, thin AlAs capping layers (CLs) on InAs quantum dot solar cells (QDSCs) have been shown to yield better photovoltaic efficiency compared to traditional QDSCs. Although it has been proposed that this improvement is due to the suppression of the capture of photogenerated carriers through the wetting layer (WL) states by a de-wetting process, the mechanisms that operate during this process are not clear. In this work, a structural analysis of the WL characteristics in the AlAs/InAs QD system with different CL-thickness has been made by scanning transmission electron microscopy techniques. First, an exponential decline of the amount of InAs in the WL with the CL thickness increase has been found, far from a complete elimination of the WL. Instead, this reduction is linked to a higher shield effect against QD decomposition. Second, there is no compositional separation between the WL and CL, but rather single layer with a variable content of InAlGaAs. Both effects, the high intermixing and WL reduction cause a drastic change in electronic levels, with the CL making up of 1-2 monolayers being the most effective configuration to reduce the radiative-recombination and minimize the potential barriers for carrier transport.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35889728

RESUMEN

The use of thin AlA capping layers (CLs) on InAs quantum dots (QDs) has recently received considerable attention due to improved photovoltaic performance in QD solar cells. However, there is little data on the structural changes that occur during capping and their relation to different growth conditions. In this work, we studied the effect of AlA capping growth rate (CGR) on the structural features of InAs QDs in terms of shape, size, density, and average content. As will be shown, there are notable differences in the characteristics of the QDs upon changing CGR. The Al distribution analysis in the CL around the QDs was revealed to be the key. On the one hand, for the lowest CGR, Al has a homogeneous distribution over the entire surface, but there is a large thickening of the CL on the sides of the QD. As a result, the QDs are lower, lenticular in shape, but richer in In. On the other hand, for the higher CGRs, Al accumulates preferentially around the QD but with a more uniform thickness, resulting in taller QDs, which progressively adopt a truncated pyramidal shape. Surprisingly, intermediate CGRs do not improve either of these behaviors, resulting in less enriched QDs.

3.
Nanomaterials (Basel) ; 9(4)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999574

RESUMEN

Superlattice structures (SLs) with type-II (GaAsSb/GaAsN) and -I (GaAsSbN/GaAs) band alignments have received a great deal of attention for multijunction solar cell (MJSC) applications, as they present a strongly intensified luminescence and a significant external quantum efficiency (EQE), with respect to the GaAsSbN bulk layers. Despite the difficulties in characterizing the distribution of N in dilute III-V nitride alloys, in this work we have obtained N-compositional mappings before and after rapid thermal annealing (RTA) in both types of structures, by using a recent methodology based on the treatment of different scanning transmission electron microscopy (STEM) imaging configurations. Texture analysis by gray level co-occurrence matrixes (GLCM) and the measurement of the degree of clustering are used to compare and evaluate the compositional inhomogeneities of N. Comparison with the Sb maps shows that there is no spatial correlation between the N and Sb distributions. Our results reveal that a better homogeneity of N is obtained in type-I SLs, but at the expense of a higher tendency of Sb agglomeration, and the opposite occurs in type-II SLs. The RTA treatments improve the uniformity of N and Sb in both designs, with the annealed sample of type-II SLs being the most balanced structure for MJSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA