Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Stem Cells ; 32(1): 258-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24023036

RESUMEN

The composition of cell-surface proteins changes during lineage specification, altering cellular responses to their milieu. The changes that characterize maturation of early neural stem cells (NSCs) remain poorly understood. Here we use mass spectrometry-based cell surface capture technology to profile the cell surface of early NSCs and demonstrate functional requirements for several enriched molecules. Primitive NSCs arise from embryonic stem cells upon removal of Transforming growth factor-ß signaling, while definitive NSCs arise from primitive NSCs upon Lif removal and FGF addition. In vivo aggregation assays revealed that N-cadherin upregulation is sufficient for the initial exclusion of definitive NSCs from pluripotent ectoderm, while c-kit signaling limits progeny of primitive NSCs. Furthermore, we implicate EphA4 in primitive NSC survival signaling and Erbb2 as being required for NSC proliferation. This work elucidates several key mediators of NSC function whose relevance is confirmed on forebrain-derived populations and identifies a host of other candidates that may regulate NSCs.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas de la Membrana/metabolismo , Células-Madre Neurales/metabolismo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Madre Embrionarias/citología , Femenino , Humanos , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal , Células-Madre Neurales/citología , ARN Interferente Pequeño/genética , Transducción de Señal
2.
J Neurosci ; 32(23): 7771-81, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22674254

RESUMEN

Clonal cell culture is crucial for experimental protocols that require growth or selection of pure populations of cells. High-density derivation of neural progenitors from human embryonic stem cells (hESCs) can lead to incomplete differentiation, and transplantation of resulting heterogeneous cell mixtures can cause proliferation of tumorigenic clusters in vivo. We have identified the neural precursor that resides among normal hESC colonies as a TRA-1-60(-)/SSEA4(-)/SOX1(+) cell and developed a method that allows for the clonal expansion of these FACS-selected progenitors to neural stem cells (NSCs) in serum-free conditions. Single TRA-1-60(-)/SSEA4(-)/SOX1(+) cells grown in serum-free media give rise to multipotent NSCs with an efficiency of 0.7%. The fate of the TRA-1-60(-)/SSEA4(-)/SOX1(+) neural precursor becomes specified in maintenance conditions by inhibition of BMP signaling. This clonal culture method can be scaled up to produce NSCs for differentiation and use in cell therapies.


Asunto(s)
Células Clonales/fisiología , Células Madre Embrionarias/fisiología , Células-Madre Neurales/fisiología , Proteínas Morfogenéticas Óseas/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula , Supervivencia Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Medio de Cultivo Libre de Suero , ADN Complementario/biosíntesis , ADN Complementario/genética , Factores de Crecimiento de Fibroblastos/fisiología , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Neostriado/citología , Neostriado/fisiología , Reacción en Cadena de la Polimerasa , ARN/biosíntesis , ARN/aislamiento & purificación , Trasplante de Células Madre , Quinasas Asociadas a rho/antagonistas & inhibidores
3.
J Cell Biol ; 172(1): 79-90, 2006 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-16390999

RESUMEN

The mechanisms governing the emergence of the earliest mammalian neural cells during development remain incompletely characterized. A default mechanism has been suggested to underlie neural fate acquisition; however, an instructive process has also been proposed. We used mouse embryonic stem (ES) cells to explore the fundamental issue of how an uncommitted, pluripotent mammalian cell will self-organize in the absence of extrinsic signals and what cellular fate will result. To assess this default state, ES cells were placed in conditions that minimize external influences. Individual ES cells were found to rapidly transition directly into neural cells, a process shown to be independent of suggested instructive factors (e.g., fibroblast growth factors). Further, we provide evidence that the default neural identity is that of a primitive neural stem cell (NSC). The exiguous conditions used to reveal the default state were found to present primitive NSCs with a survival challenge (limiting their persistence and proliferation), which could be mitigated by survival factors or genetic interference with apoptosis.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Neuronas/citología , Animales , Apoptosis , Línea Celular , Proliferación Celular , Células Cultivadas , Investigaciones con Embriones , Eliminación de Gen , Ratones , Modelos Biológicos , Sistema Nervioso/citología , Neuronas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores
4.
Stem Cells Dev ; 23(7): 767-78, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24192139

RESUMEN

The embryonic stem cell (ESC) derived from the inner cell mass is viewed as the core pluripotent cell (PC) type from which all other cell types emanate. This familiar perspective derives from an embryological time line in which PCs are ordered according to their time of appearance. However, this schema does not take into account their potential for interconversion, thereby excluding this critical quality of PCs. The persistence of bona fide pluripotent adult stem cells has garnered increasing attention in recent years. Adult pluripotent spermatogonial germ stem cells (aSGSCs) arise from primordial germ cells (pGCs) that emerge from the epiblast during gastrulation. Adult definitive neural stem cells (dNSCs) arise clonally from pluripotent embryonic primitive neural stem cells (pNSCs), which can also be derived clonally from ESCs. To test for stem cell-type convertibility, we employed differentiation in the clonal lineage from ESCs to pNSCs to dNSCs, and revealed the relationships and lineage positioning among various PC populations, including spermatogonial germ cells (aSGSCs), epiblast-derived stem cells (Epi-SCs) and the bFGF, Activin, and BIO-derived stem cell (FAB-SC). Adult, murine aSGSCs assumed a 'pseudo-ESC' state in vitro, and then differentiated into dNSCs, but not pNSCs. Similarly, Epi-SCs and FAB-SCs only gave rise to dNSCs and not to pNSCs. The results of these experiments suggest a new pluripotency lineage model describing the relationship(s) among PCs that better reflects the transitions between these cell types in vitro.


Asunto(s)
Células Madre Adultas/citología , Linaje de la Célula/fisiología , Estratos Germinativos/citología , Células-Madre Neurales/citología , Células Madre Pluripotentes/citología , Espermatogonias/citología , Activinas/metabolismo , Células Madre Adultas/fisiología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Estratos Germinativos/fisiología , Humanos , Masculino , Ratones , Células-Madre Neurales/fisiología , Células Madre Pluripotentes/fisiología , Espermatogonias/fisiología
5.
J Exp Biol ; 205(Pt 18): 2925-33, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12177157

RESUMEN

We examined whether the previously reported low cost of embryonic development in pelicans could be attributed to a more efficient conversion of egg energy to hatchling tissues as a result of high initial egg water content, low embryonic metabolic rate and growth later in incubation than in more precocious species. We therefore determined egg and hatchling composition and the development of embryonic respiration in the Australian pelican Pelecanus conspicillatus, which lays one of the largest eggs (140-210 g) with an altricial developmental mode. The small yolk fraction (21%) is typical of all pelecaniforms; however, we found that intraspecific variability in fresh egg mass was related to water content (principally in the albumen), but independent of yolk mass (mean 13 g dry mass). P. conspicillatus eggs have, on average, 635 kJ of energy, irrespective of egg mass across the whole range of egg mass. The embryonic developmental pattern of O(2) consumption and CO(2) production showed clear plateaus lasting 2-3 days immediately prior to internal pipping, resembling the typical precocial pattern. However, the rate of pre-internal pipping O(2) consumption was low in comparison with that of precocial species of similar egg mass. There is no evidence to support the hypothesis that the observed plateau in rates of O(2) uptake is due to a diffusion limitation of the eggshell gas conductance in this species. Embryonic metabolic rate nearly doubled during the pipping period, but the mass-independent metabolic rate of the hatchling was low in comparison with that of the resting adult. The total O(2) consumed (11 063 ml) is equivalent to 217.3 kJ (or 34% of egg energy) based on indirect calorimetry and the observed respiratory exchange ratio of 0.71. Thus, the cost of development (direct calorimetry) was 0.29 kJ J(-1) in the egg (mean egg mass 168 g), which is one of lowest reported values. As a result, the production efficiency of pelican embryonic development was 61.6%, higher than the average for birds in general (56.9%) and, in particular, of seabirds that have prolonged incubation periods on the basis of egg mass. High efficiency in embryonic development in this species was attained as a result of rapid embryonic growth later in incubation, low hatchling energy density (23.6 kJ g(-1) dry matter) and dry matter content, low embryonic metabolic rate throughout incubation and a shorter than expected incubation period of 33 days (predicted 36 days).


Asunto(s)
Aves/embriología , Embrión no Mamífero/fisiología , Metabolismo Energético/fisiología , Morfogénesis/fisiología , Consumo de Oxígeno/fisiología , Animales , Australia , Femenino , Óvulo/química , Óvulo/fisiología , Análisis de Regresión , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA