RESUMEN
Non-communicable diseases (NCDs) are described as a collection of chronic diseases that do not typically develop from an acute infection, have long-term health effects, and frequently require ongoing care and therapy. These diseases include heart disease, stroke, cancer, chronic lung disease, neurological diseases, osteoporosis, mental health disorders, etc. Known synthetic drugs for the treatment or prevention of NCDs become increasingly dangerous over time and pose high risks due to side effects such as hallucination, heart attack, liver failure, etc. As a result, scientists have had to look for other alternatives that are natural products and that are known to be less detrimental and contain useful bioactive compounds. The increasing understanding of the biological and pharmacological significance of carbohydrates has helped to raise awareness of their importance in living systems and medicine, given they play numerous biological roles. For example, pectin has been identified as a class of secondary metabolites found in medicinal plants that may play a significant role in the treatment and management of a variety of NCDs. Pectin is mainly made of homogalacturonan, which is a linear polymer composed primarily of D-galacturonic acid units (at least 65%) linked in a chain by α-(1,4)-glycosidic linkages. There are also modified pectins or derivatives that improve pectin's bioavailability. Pectin is found in the cell walls of higher plants (pteridophytes, angiosperms, and gymnosperms), particularly in the middle lamella of the plant material. Citrus pectin is used in various industries. This article compiles information that has been available for years about the therapeutic importance of pectin in chronic diseases, different modes of pectin extraction, the chemistry of pectin, and the potency of pectin and its derivatives.
Asunto(s)
Helechos , Magnoliopsida , Humanos , Pectinas/química , Magnoliopsida/metabolismo , Glicósidos , Enfermedad CrónicaRESUMEN
Pectin is a natural polymer that is found in the cell walls of higher plants. This study presents a comprehensive analysis of pectin extracted from lemon in two different geographic regions (Peddie and Fort Beaufort) in two consecutive years (2023 and 2024) named PP 2023, PP 2024, FBP 2023, and FBP 2024. The dried lemon peels were ground into a powder, sifted to obtain particles of 500 µm, and then subjected to pectin extraction using a conventional method involving mixing lemon peel powder with distilled water, adjusting the pH level to 2.0 with HCl, heating the mixture at 70 °C for 45 min, filtering the acidic extract, and precipitating pectin with ethanol. The yield of these pectin samples was statistically significant, as FBP 2024 had a maximum yield of 12.2 ± 0.02%, PP 2024 had a maximum yield of 13.0 ± 0.02%, FBP 2023 had a maximum yield of 12.2 ± 0.03%, and PP 2023 had a maximum yield of 13.1 ± 0.03%, The variation in yield could be due to the differences in the growing conditions, such as the climate and soil, which could have affected the pectin content in the lemons. The physicochemical characterization of all samples proved that our pectin samples could be used in the pharmaceutical and food industries, with anhydrouronic acid content which was greater than 65%, as suggested by the FAO. The scanning electron microscope analysis of all extracted pectin was rough and jagged, while the commercial pectin displayed a smooth surface morphology with a consistent size. FTIR confirmed the functional groups which were present in our samples. Thermogravimetric analysis was employed to investigate the thermal behavior of the extracted pectin in comparison with commercial pectin. It was found that the extracted pectin had three-step degradation while the commercial pectin had four-step degradation. Additionally, pectin samples have been shown to have antioxidants, as the IC50 of PP 2024, PP 2023, FBP 2023, FBP 2024, and Commercial P was 1062.5 ± 20.0, 1201.3 ± 22.0, 1304.6 ± 19.0, 1382.6 ± 29.9, and 1019.4 ± 17.1 mg/L, respectively. These findings indicate that lemon pectin has promising characteristics as a biopolymer for use in biomedical applications.
Asunto(s)
Antioxidantes , Citrus , Pectinas , Pectinas/química , Pectinas/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Citrus/química , Extractos Vegetales/química , Frutas/químicaRESUMEN
Pelargonium species are native to South Africa, and they have a long history in medicinal use. This study aimed to extract essential oils from different parts of P. peltatum, determine the chemical composition of the essential oils, and assess the essential oils' biological potential as analgesic and anti-inflammatory agents. The essential oils were obtained by hydro-distilling different parts of P. peltatum, and the essential profile was determined by GC-FID and GC-MS. The analgesic activity of the essential oil was determined by using a tail immersion in hot water method in rats, whereas the anti-inflammatory activity of the essential oils was assessed according to right hind paw oedema induced by egg albumin; the three doses selected for each experiment were 100, 200, and 400 mg/kg. According to the GC-FID and GC-MS analysis, camphene (3.6-33.4%), α-terpineol (4.8-19.1%), α-thujone (1.5-15.6%), piperitone (0.9-12.2%), linalool (1.6-11.7%), myrcene (5.2-10.7%), germacrene D (3.7-10.4%), ß-caryophyllene (1.2-9.5%), ß-cadinene (3.4-6.7%), and ß-bourbonene (4.2-6.2%) were some of the major compounds identified in the oil. P. peltatum essential oils demonstrated analgesic activity by increasing pain latency in hot water; furthermore, in an inflammation test, the essential oil reduced the egg-albumin-induced paw oedema in both the first and second phases. Therefore, the current findings suggest that P. peltatum essential oils have analgesic and anti-inflammatory properties.
Asunto(s)
Aceites Volátiles , Pelargonium , Ratas , Animales , Pelargonium/química , Sudáfrica , Aceites de Plantas/química , Aceites Volátiles/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológicoRESUMEN
Cymbopogon genus is a member of the family of Gramineae which are herbs known worldwide for their high essential oil content. They are widely distributed across all continents where they are used for various purposes. The commercial and medicinal uses of the various species of Cymbopogon are well documented. Ethnopharmacology evidence shows that they possess a wide array of properties that justifies their use for pest control, in cosmetics and as anti-inflammation agents. These plants may also hold promise as potent anti-tumor and chemopreventive drugs. The chemo-types from this genus have been used as biomarkers for their identification and classification. Pharmacological applications of Cymbopogon citratus are well exploited, though studies show that other species may also useful pharmaceutically. Hence this literature review intends to discuss these species and explore their potential economic importance.
Asunto(s)
Cymbopogon/metabolismo , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Fitoterapia/métodos , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Quimioprevención/métodos , Etnofarmacología , Control Biológico de VectoresRESUMEN
OBJECTIVE: To evaluate the essential oil composition and the anti-inflammatory activity of Cymbopogon validus (C. validus) leaves and flowers. METHODS: A total of 300 g of fresh or dry (leaves and flowers) of C. validus were cut into small pieces and subjected to hydro-distillation method for approximately 5 h using the Clevenger apparatus. The extracted essential oils were then used for testing the anti-inflammatory activity. The anti-inflammatory activity was evaluated by using egg albumin-induced paw edema. RESULTS: The extracted oils had the following yields 2.2% for fresh leaves, 2.0% for dry leaves and 2.4% v/w for dry flowers. GC-MS results revealed that the oils contained artemisia ketone (37.5%), linalool (3.2%-29.6%), northujane (4.4%-16.8%), verbenone (13.5%), naphthalene (1.7%-9.6%), δ-cadinene (0.5%-8.1%), hedycaryol (5.4%-7.6%) and α-eudesmol (6.5%-6.7%) as the major constituents. C. validus essential oils showed significant (P < 0.05) anti-inflammatory effects from the first 30 min after albumin injection compared to aspirin which had a later onset of effect. CONCLUSIONS: The findings of this study show that the essential oil extracted from C. validus fresh or dry leaves and flowers have anti-inflammatory properties; that might be associated with the major components and the minor components found in the essential oils.