Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arch Toxicol ; 96(6): 1799-1813, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366062

RESUMEN

Liver fibrosis is the late consequence of chronic liver inflammation which could eventually lead to cirrhosis, and liver failure. Among various etiological factors, activated hepatic stellate cells (aHSCs) are the major players in liver fibrosis. To date, various in vitro liver fibrosis models have been introduced to address biological and medical questions. Availability of traditional in vitro models could not fully recapitulate complicated pathology of liver fibrosis. The purpose of this study was to develop a simple and robust model to investigate the role of aHSCs on the progression of epithelial to mesenchymal transition (EMT) in hepatocytes during liver fibrogenesis. Therefore, we applied a micropatterning approach to generate 3D co-culture microtissues consisted of HepaRG and human umbilical cord endothelial cells (HUVEC) which co-cultured with inactivated LX-2 cells or activated LX-2 cells, respectively, as normal or fibrotic liver models in vitro. The result indicated that the activated LX-2 cells could induce EMT in HepaRG cells through activation of TGF-ß/SMAD signaling pathway. Besides, in the fibrotic microtissue, physiologic function of HepaRG cells attenuated compared to the control group, e.g., metabolic activity and albumin secretion. Moreover, our results showed that after treatment with Galunisertib, the fibrogenic properties decreased, in the term of gene and protein expression. In conclusion, it is proposed that aHSCs could lead to EMT in hepatocytes during liver fibrogenesis. Furthermore, the scalable micropatterning approach could provide enough required liver microtissues to prosper our understanding of the mechanisms involved in the progression of liver fibrosis as well as high throughput (HT) drug screening.


Asunto(s)
Células Endoteliales , Transición Epitelial-Mesenquimal , Células Endoteliales/metabolismo , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/patología
2.
Arch Toxicol ; 96(9): 2511-2521, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748891

RESUMEN

The HepaRG cell line represents a successful model for hepatotoxicity studies. These cells are of human origin and are differentiated in vitro into mature and functional hepatocyte-like cells. The objective of this research was to compare two different culture protocols, Sison-Young et al. 2017 (hereinafter referred as Sison) and Gripon et al. 2002 (hereinafter referred as Biopredic) for HepaRG cells in order to optimise this model for drug metabolism and toxicity testing studies. HepaRG cells obtained from the same batch were cultured according to the described protocols. Using both protocols, differentiated HepaRG cells retained their drug metabolic capacity (major phase I/II enzymes) and transporters, as well as their morphological characteristics. Morphologically, HepaRG cells cultured after the Biopredic protocol formed more apical membranes and small ductular-like structures, than those cultivated using the Sison protocol. Also, the efflux activity of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1) as well as the activity of uridine-glucuronosyltransferase (UGT) and glutathione S-transferase (GST) were significantly reduced in HepaRG cultured using the Sison protocol. Applying well-established drug cocktails to measure cytochrome P450 (CYPs) activity, we found that production of the corresponding metabolites was hampered in Sison-cultured HepaRG cells, indicating that the activity of CYP1A2, CYP2C9, CYP3A4, CYP2B6 and CYP2C19 was significantly reduced. Moreover, HepaRG sensitivity to well-known drugs, namely diclofenac, amiodarone, imipramine and paracetamol, revealed some differences between the two culture protocols. Furthermore, the HepaRG cells can be maintained with higher viability and sufficient CYPs activity and expression (i.e. CYP3A4, CYP1A2 and CYP2B6) as well as liver-specific functions, using Biopredic compared with the Sison culture protocol. These maintained liver-specific functions might be dependent on the prolongation of the culture conditions in the case of the Biopredic protocol. In conclusion, based on the metabolic activity of HepaRG cells using the standard protocol from Biopredic, we believe that this protocol is optimal for investigating drug metabolism and pharmacokinetic screening studies.


Asunto(s)
Citocromo P-450 CYP1A2 , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Línea Celular , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Hepatocitos/metabolismo , Humanos
3.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654452

RESUMEN

Although human liver tumor cells have reduced metabolic functions as compared to primary human hepatocytes (PHH) they are widely used for pre-screening tests of drug metabolism and toxicity. The aim of the present study was to modify liver cancer cell lines in order to improve their drug-metabolizing activities towards PHH. It is well-known that epigenetics is strongly modified in tumor cells and that epigenetic regulators influence the expression and function of Cytochrome P450 (CYP) enzymes through altering crucial transcription factors responsible for drug-metabolizing enzymes. Therefore, we screened the epigenetic status of four different liver cancer cell lines (Huh7, HLE, HepG2 and AKN-1) which were reported to have metabolizing drug activities. Our results showed that HepG2 cells demonstrated the highest similarity compared to PHH. Thus, we modified the epigenetic status of HepG2 cells towards 'normal' liver cells by 5-Azacytidine (5-AZA) and Vitamin C exposure. Then, mRNA expression of Epithelial-mesenchymal transition (EMT) marker SNAIL and CYP enzymes were measured by PCR and determinate specific drug metabolites, associated with CYP enzymes by LC/MS. Our results demonstrated an epigenetic shift in HepG2 cells towards PHH after exposure to 5-AZA and Vitamin C which resulted in a higher expression and activity of specific drug metabolizing CYP enzymes. Finally, we observed that 5-AZA and Vitamin C led to an increased expression of Hepatocyte nuclear factor 4α (HNF4α) and E-Cadherin and a significant down regulation of Snail1 (SNAIL), the key transcriptional repressor of E-Cadherin. Our study shows, that certain phase I genes and their enzyme activities are increased by epigenetic modification in HepG2 cells with a concomitant reduction of EMT marker gene SNAIL. The enhancing of liver specific functions in hepatoma cells using epigenetic modifiers opens new opportunities for the usage of cell lines as a potential liver in vitro model for drug testing and development.


Asunto(s)
Epigénesis Genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Ácido Ascórbico/farmacología , Azacitidina/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Cromatina/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hidrocortisona/farmacología , Insulina/farmacología , Neoplasias Hepáticas/enzimología , Factores de Transcripción de la Familia Snail/metabolismo , Xenobióticos/metabolismo
4.
Int J Mol Sci ; 20(10)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137669

RESUMEN

Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-ß) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)-osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers.


Asunto(s)
Enfermedades Óseas Metabólicas/etiología , Hepatopatías/complicaciones , Animales , Enfermedades Óseas Metabólicas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Calcio/metabolismo , Humanos , Hepatopatías/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Vitamina D/metabolismo
6.
Cells ; 10(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063948

RESUMEN

Liver organoids (LOs) are receiving considerable attention for their potential use in drug screening, disease modeling, and transplantable constructs. Hepatocytes, as the key component of LOs, are isolated from the liver or differentiated from pluripotent stem cells (PSCs). PSC-derived hepatocytes are preferable because of their availability and scalability. However, efficient maturation of the PSC-derived hepatocytes towards functional units in LOs remains a challenging subject. The incorporation of cell-sized microparticles (MPs) derived from liver extracellular matrix (ECM), could provide an enriched tissue-specific microenvironment for further maturation of hepatocytes inside the LOs. In the present study, the MPs were fabricated by chemical cross-linking of a water-in-oil dispersion of digested decellularized sheep liver. These MPs were mixed with human PSC-derived hepatic endoderm, human umbilical vein endothelial cells, and mesenchymal stromal cells to produce homogenous bioengineered LOs (BLOs). This approach led to the improvement of hepatocyte-like cells in terms of gene expression and function, CYP activities, albumin secretion, and metabolism of xenobiotics. The intraperitoneal transplantation of BLOs in an acute liver injury mouse model led to an enhancement in survival rate. Furthermore, efficient hepatic maturation was demonstrated after ex ovo transplantation. In conclusion, the incorporation of cell-sized tissue-specific MPs in BLOs improved the maturation of human PSC-derived hepatocyte-like cells compared to LOs. This approach provides a versatile strategy to produce functional organoids from different tissues and offers a novel tool for biomedical applications.


Asunto(s)
Hepatocitos , Hígado , Organoides , Animales , Diferenciación Celular , Hepatocitos/citología , Hepatocitos/metabolismo , Células Madre Embrionarias Humanas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas , Hígado/citología , Hígado/metabolismo , Células Madre Mesenquimatosas , Organoides/citología , Organoides/metabolismo , Ovinos
7.
J Funct Biomater ; 11(1)2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32183326

RESUMEN

Drug-induced liver toxicity is one of the most common reasons for the failure of drugs in clinical trials and frequent withdrawal from the market. Reasons for such failures include the low predictive power of in vivo studies, that is mainly caused by metabolic differences between humans and animals, and intraspecific variances. In addition to factors such as age and genetic background, changes in drug metabolism can also be caused by disease-related changes in the liver. Such metabolic changes have also been observed in clinical settings, for example, in association with a change in liver stiffness, a major characteristic of an altered fibrotic liver. For mimicking these changes in an in vitro model, this study aimed to develop scaffolds that represent the rigidity of healthy and fibrotic liver tissue. We observed that liver cells plated on scaffolds representing the stiffness of healthy livers showed a higher metabolic activity compared to cells plated on stiffer scaffolds. Additionally, we detected a positive effect of a scaffold pre-coated with fetal calf serum (FCS)-containing media. This pre-incubation resulted in increased cell adherence during cell seeding onto the scaffolds. In summary, we developed a scaffold-based 3D model that mimics liver stiffness-dependent changes in drug metabolism that may more easily predict drug interaction in diseased livers.

8.
Food Chem Toxicol ; 138: 111188, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32045649

RESUMEN

Hepatotoxicity is among the most frequent reasons for drug withdrawal from the market. Therefore, there is an urgent need for reliable predictive in vitro tests, which unfailingly identify hepatotoxic drug candidates, reduce drug development time, expenses and the number of test animals. Currently, human hepatocytes represent the gold standard. However, the use of hepatocytes is challenging since the cells are not constantly available and lose their metabolic activity in culture. To solve these problems many different approaches have been developed in the past decades. The aim of this review is to present these approaches and to discuss the possibilities and limitations as well as future opportunities and directions.


Asunto(s)
Técnicas de Cultivo de Célula , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Hepatocitos/efectos de los fármacos , Activación Metabólica , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Técnicas de Cocultivo , Medios de Cultivo/química , Desarrollo de Medicamentos , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Fallo Hepático Agudo/complicaciones , Fallo Hepático Agudo/diagnóstico , Modelos Animales , Esferoides Celulares , Andamios del Tejido
9.
Cells ; 9(2)2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012725

RESUMEN

Organ and tissue shortage are known as a crucially important public health problem as unfortunately a small percentage of patients receive transplants. In the context of emerging regenerative medicine, researchers are trying to regenerate and replace different organs and tissues such as the liver, heart, skin, and kidney. Liver tissue engineering (TE) enables us to reproduce and restore liver functions, fully or partially, which could be used in the treatment of acute or chronic liver disorders and/or generate an appropriate functional organ which can be transplanted or employed as an extracorporeal device. In this regard, a variety of techniques (e.g., fabrication technologies, cell-based technologies, microfluidic systems and, extracorporeal liver devices) could be applied in tissue engineering in liver regenerative medicine. Common TE techniques are based on allocating stem cell-derived hepatocyte-like cells or primary hepatocytes within a three-dimensional structure which leads to the improvement of their survival rate and functional phenotype. Taken together, new findings indicated that developing liver tissue engineering-based techniques could pave the way for better treatment of liver-related disorders. Herein, we summarized novel technologies used in liver regenerative medicine and their future applications in clinical settings.


Asunto(s)
Regeneración Hepática/fisiología , Medicina Regenerativa , Ingeniería de Tejidos , Investigación Biomédica Traslacional , Animales , Humanos , Hepatopatías/fisiopatología , Hepatopatías/terapia , Andamios del Tejido/química
10.
Nutrients ; 11(8)2019 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-31382615

RESUMEN

The liver plays a pivotal role in whole-body carbohydrate, lipid, and protein metabolism. One of the key regulators of glucose and lipid metabolism are hepatokines, which are found among the liver secreted proteins, defined as liver secretome. To elucidate the composition of the human liver secretome and identify hepatokines in primary human hepatocytes (PHH), we conducted comprehensive protein profiling on conditioned medium (CM) of PHH. Secretome profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) identified 691 potential hepatokines in PHH. Subsequently, pathway analysis assigned these proteins to acute phase response, coagulation, and complement system pathways. The secretome of PHH was compared to the secreted proteins of the liver hepatoma cell line HepG2. Although the secretome of PHH and HepG2 cells show a high overlap, the HepG2 secretome rather mirrors the fetal liver with some cancer characteristics. Collectively, our study represents one of the most comprehensive secretome profiling approaches for PHH, allowing new insights into the composition of the secretome derived from primary human material, and points out strength and weakness of using HepG2 cell secretome as a model for the analysis of the human liver secretome.


Asunto(s)
Hepatocitos/metabolismo , Proteínas/metabolismo , Cromatografía de Fase Inversa , Células Hep G2 , Humanos , Cultivo Primario de Células , Proteómica/métodos , Vías Secretoras , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
11.
Methods Protoc ; 3(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878071

RESUMEN

In order to increase the metabolic activity of human hepatocytes and liver cancer cell lines, many approaches have been reported in recent years. The metabolic activity could be increased mainly by cultivating the cells in 3D systems or co-cultures (with other cell lines). However, if the system becomes more complex, it gets more difficult to quantify the number of cells (e.g., on a 3D matrix). Until now, it has been impossible to quantify different cell types individually in 3D co-culture systems. Therefore, we developed a PCR-based method that allows the quantification of HepG2 cells and 3T3-J2 cells separately in a 3D scaffold culture. Moreover, our results show that this method allows better comparability between 2D and 3D cultures in comparison to the often-used approaches based on metabolic activity measurements, such as the conversion of resazurin.

12.
Bioengineering (Basel) ; 6(3)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394780

RESUMEN

Human adipose-derived mesenchymal stem/stromal cells (Ad-MSCs) have great potential for bone tissue engineering. Cryogels, mimicking the three-dimensional structure of spongy bone, represent ideal carriers for these cells. We developed poly(2-hydroxyethyl methacrylate) cryogels, containing hydroxyapatite to mimic inorganic bone matrix. Cryogels were additionally supplemented with different types of proteins, namely collagen (Coll), platelet-rich plasma (PRP), immune cells-conditioned medium (CM), and RGD peptides (RGD). The different protein components did not affect scaffolds' porosity or water-uptake capacity, but altered pore size and stiffness. Stiffness was highest in scaffolds with PRP (82.3 kPa), followed by Coll (55.3 kPa), CM (45.6 kPa), and RGD (32.8 kPa). Scaffolds with PRP, CM, and Coll had the largest pore diameters (~60 µm). Ad-MSCs were osteogenically differentiated on these scaffolds for 14 days. Cell attachment and survival rates were comparable for all four scaffolds. Runx2 and osteocalcin levels only increased in Ad-MSCs on Coll, PRP and CM cryogels. Osterix levels increased slightly in Ad-MSCs differentiated on Coll and PRP cryogels. With differentiation alkaline phosphatase activity decreased under all four conditions. In summary, besides Coll cryogel our PRP cryogel constitutes as an especially suitable carrier for bone tissue engineering. This is of special interest, as this scaffold can be generated with patients' PRP.

13.
Bioengineering (Basel) ; 5(4)2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332824

RESUMEN

Due to pronounced species differences, hepatotoxicity of new drugs often cannot be detected in animal studies. Alternatively, human hepatocytes could be used, but there are some limitations. The cells are not always available on demand or in sufficient amounts, so far there has been only limited success to allow the transport of freshly isolated hepatocytes without massive loss of function or their cultivation for a long time. Since it is well accepted that the cultivation of hepatocytes in 3D is related to an improved function, we here tested the Optimaix-3D Scaffold from Matricel for the transport and cultivation of hepatocytes. After characterization of the scaffold, we shipped cells on the scaffold and/or cultivated them over 10 days. With the evaluation of hepatocyte functions such as urea production, albumin synthesis, and CYP activity, we showed that the metabolic activity of the cells on the scaffold remained nearly constant over the culture time whereas a significant decrease in metabolic activity occurred in 2D cultures. In addition, we demonstrated that significantly fewer cells were lost during transport. In summary, the collagen-based scaffold allows the transport and cultivation of hepatocytes without loss of function over 10 days.

14.
Metabolism ; 88: 22-30, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30195474

RESUMEN

BACKGROUND: The activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrosis, however the role of HSCs is less understood in hepatic insulin resistance. Since in the liver cGMP-dependent protein kinase I (cGKI) was detected in HSC but not in hepatocytes, and cGKI-deficient mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice) displayed hepatic insulin resistance, we hypothesized that cGKI modulates HSC activation and insulin sensitivity. MATERIALS AND METHODS: To study stellate cell activation in cGKI-SM mice, retinol storage and gene expression were studied. Moreover, in the human stellate cell line LX2, the consequences of cGKI-silencing on gene expression were investigated. Finally, cGKI expression was examined in human liver biopsies covering a wide range of liver fat content. RESULTS: Retinyl-ester concentrations in the liver of cGKI-SM mice were lower compared to wild-type animals, which was associated with disturbed expression of genes involved in retinol metabolism and inflammation. cGKI-silenced LX2 cells showed an mRNA expression profile of stellate cell activation, altered matrix degradation and activated chemokine expression. On the other hand, activation of LX2 cells suppressed cGKI expression. In accordance with this finding, in human liver biopsies, we observed a negative correlation between cGKI mRNA and liver fat content. CONCLUSIONS: These results suggest that the lack of cGKI possibly leads to stellate cell activation, which stimulates chemokine expression and activates inflammatory processes, which could disturb hepatic insulin sensitivity.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Células Estrelladas Hepáticas/citología , Animales , Biopsia , Línea Celular Transformada , Quimiocinas/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Hígado Graso/enzimología , Hígado Graso/metabolismo , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética
15.
Clin Epigenetics ; 8: 46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27134688

RESUMEN

BACKGROUND: 5-Azacytidine (5-AZA), a DNA methyl transferase inhibitor, is a clinically used epigenetic drug for cancer therapy. Recently, we have shown that 5-AZA upregulates ten-eleven translocation (TET) protein expression in hepatocellular carcinoma (HCC) cells, which induce active demethylation. Vitamin C facilitates TET activity and enhances active demethylation. The aim of this study is to investigate whether vitamin C is able to enhance the effect of 5-AZA on active demethylation and to evaluate its consequence in HCC cell lines. METHODS: HCC cell lines (Huh7 and HLE) were treated with 5-AZA and vitamin C. After 48 h of treatment, viability (resazurin conversion), toxicity (lactose dehydrogenase (LDH) release), and proliferation ((proliferating cell nuclear antigen (PCNA)) of single- and combined-treated cells were assessed. The effect of the treatment on 5-hydroxymethylcytosine (5hmC) intensity (immunofluorescence (IF) staining), TET, Snail, GADD45B, and P21 mRNA (real-time PCR) and protein expression (Western blot) were investigated. RESULTS: Our results indicated that vitamin C enhances the anti-proliferative and apoptotic effect of 5-AZA in HCC cell lines. By further analyzing the events leading to cell cycle arrest, we have shown for the first time in HCC that the combination of 5-AZA and vitamin C leads to an enhanced downregulation of Snail expression, a key transcription factor governing epithelial-mesenchymal transition (EMT) process, and cell cycle arrest. CONCLUSIONS: We conclude that when combined with 5-AZA, vitamin C enhances TET activity in HCC cells, leading to induction of active demethylation. An increase in P21 expression as a consequence of downregulation of Snail accompanied by the induction of GADD45B expression is the main mechanism leading to cell cycle arrest in HCCs.


Asunto(s)
Ácido Ascórbico/farmacología , Azacitidina/farmacología , Carcinoma Hepatocelular/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA