Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 6): 1622-1626, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39453676

RESUMEN

We describe an ultra-compact setup for in situ X-ray diffraction on the inelastic X-ray scattering beamline ID20 at the European Synchrotron Radiation Facility. The main motivation for the design and construction of this setup is the increasing demand for on-the-fly sample characterization, as well as ease of navigation through a sample's phase diagram, for example subjected to high-pressure and/or high-temperature conditions. We provide technical details and demonstrate the performance of the setup.

2.
Inorg Chem ; 63(16): 7386-7400, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587408

RESUMEN

The molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [FeII(H2B(pz)2)2phen]0. Light-induced excited spin-state trapping (LIESST) at liquid He temperatures is exploited to characterize magnetic and spectroscopic properties of the photoinduced HS state using SQUID magnetometry and magnetic circular dichroism spectroscopy. In parallel, Fe 2p3d RIXS spectroscopy is employed to examine the ΔS = 0, 1 excited LF states. These experimental studies are combined with state-of-the-art CASSCF/NEVPT2 and CASCI/NEVPT2 calculations characterizing the ground and LF excited states. Analysis of the acquired LF information further supports the notion that the spin-crossover of [FeII(H2B(pz)2)2phen]0 is asymmetric, evidenced by a decrease in eπ in the LS state. The results demonstrate the power of cross-correlating spectroscopic techniques with high and low LF information content to make accurate excited-state assignments, as well as the current capabilities of ab initio theory in interpreting these electronic properties.

3.
Proc Natl Acad Sci U S A ; 117(46): 28596-28602, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33122434

RESUMEN

Interaction effects can change materials properties in intriguing ways, and they have, in general, a huge impact on electronic spectra. In particular, satellites in photoemission spectra are pure many-body effects, and their study is of increasing interest in both experiment and theory. However, the intrinsic spectral function is only a part of a measured spectrum, and it is notoriously difficult to extract this information, even for simple metals. Our joint experimental and theoretical study of the prototypical simple metal aluminum demonstrates how intrinsic satellite spectra can be extracted from measured data using angular resolution in photoemission. A nondispersing satellite is detected and explained by electron-electron interactions and the thermal motion of the atoms. Additional nondispersing intensity comes from the inelastic scattering of the outgoing photoelectron. The ideal intrinsic spectral function, instead, has satellites that disperse both in energy and in shape. Theory and the information extracted from experiment describe these features with very good agreement.

4.
J Synchrotron Radiat ; 29(Pt 3): 908-915, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511024

RESUMEN

Resonant inelastic X-ray scattering in the XUV-regime has been implemented at BESSY II, pushing for a few-meV bandwidth in inelastic X-ray scattering at transition metal M-edges, rare earth N-edges and the K-edges of light elements up to carbon with full polarization control. The new dedicated low-energy beamline UE112-PGM1 has been designed to provide 1 µm vertical and 20 µm horizontal beam dimensions that serve together with sub-micrometre solid-state sample positioning as the source point for a high-resolution plane grating spectrometer and a high-transmission Rowland spectrometer for rapid overview spectra. The design and commissioning results of the beamline and high-resolution spectrometer are presented. Helium autoionization spectra demonstrate a resolving power of the beamline better than 10 000 at 64 eV with a 300 lines mm-1 grating while the measured resolving power of the spectrometer in the relevant energy range is 3000 to 6000.

5.
J Phys Chem A ; 118(18): 3288-94, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24678617

RESUMEN

We report a study on the temperature dependence of the valence electron excitation spectrum of CO2 performed using nonresonant inelastic X-ray scattering spectroscopy. The excitation spectra were measured at the temperatures of 300 and 850 K with momentum-transfer values of 0.4-4.8 Å(-1), i.e., from the dipole limit to the higher-multipole regime, and were simulated using high-level coupled cluster calculations on the dipole and quadrupole level. The results demonstrate the emergence of dipole-forbidden excitations owing to temperature-induced bending mode activation and finite momentum transfer.

6.
Sci Rep ; 11(1): 1883, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479313

RESUMEN

How different microscopic mechanisms of ultrafast spin dynamics coexist and interplay is not only relevant for the development of spintronics but also for the thorough description of physical systems out-of-equilibrium. In pure crystalline ferromagnets, one of the main microscopic mechanism of spin relaxation is the electron-phonon (el-ph) driven spin-flip, or Elliott-Yafet, scattering. Unexpectedly, recent experiments with ferro- and ferrimagnetic alloys have shown different dynamics for the different sublattices. These distinct sublattice dynamics are contradictory to the Elliott-Yafet scenario. In order to rationalize this discrepancy, it has been proposed that the intra- and intersublattice exchange interaction energies must be considered in the microscopic demagnetization mechanism, too. Here, using a temperature-dependent x-ray emission spectroscopy (XES) method, we address experimentally the element specific el-ph angular momentum transfer rates, responsible for the spin-flips in the respective (sub)lattices of Fe[Formula: see text]Ni[Formula: see text], Fe[Formula: see text]Ni[Formula: see text] and pure nickel single crystals. We establish how the deduced rate evolution with the temperature is linked to the exchange coupling constants reported for different alloy stoichiometries and how sublattice exchange energies threshold the related el-ph spin-flip channels. Thus, these results evidence that the Elliott-Yafet spin-flip scattering, thresholded by sublattice exchange energies, is the relevant microscopic process to describe sublattice dynamics in alloys and elemental magnetic systems.

7.
Sci Rep ; 9(1): 8977, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222052

RESUMEN

While extensive work has been dedicated to the measurement of the demagnetization time following an ultra-short laser pulse, experimental studies of its underlying microscopic mechanisms are still scarce. In transition metal ferromagnets, one of the main mechanism is the spin-flip of conduction electrons driven by electron-phonon scattering. Here, we present an original experimental method to monitor the electron-phonon mediated spin-flip scattering rate in nickel through the stringent atomic symmetry selection rules of x-ray emission spectroscopy. Increasing the phonon population leads to a waning of the 3d → 2p3/2 decay peak intensity, which reflects an increase of the angular momentum transfer scattering rate attributed to spin-flip. We find a spin relaxation time scale in the order of 50 fs in the 3d-band of nickel at room temperature, while consistantly, no such peak evolution is observed for the diamagnetic counterexample copper, using the same method.

8.
Sci Rep ; 6: 21012, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888159

RESUMEN

In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kß emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kß emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range.

9.
Sci Rep ; 6: 22648, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26935531

RESUMEN

The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems.

10.
J Phys Condens Matter ; 27(33): 335501, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26221981

RESUMEN

We present an investigation of the valence-electron excitation spectra including the collective plasmon modes of SrTiO3, LaAlO3 and their heterostructures with non-resonant inelastic x-ray scattering. We analyse the spectra using calculations based on first principles and atomic multiplet models. We demonstrate the feasibility of performing valence IXS experiments in a total reflection geometry. Surprisingly, we find that the plasmon, interband and semicore excitations in multilayers are well described as a superposition of bulk-compound spectra even in a superstructure composing of layers of only one atomic layer thickness.

11.
J Phys Chem B ; 117(51): 16506-11, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24325126

RESUMEN

We report a study on the hydrogen-bond network of water in aqueous LiCl solutions using X-ray Raman scattering (XRS) spectroscopy. A wide concentration range of 0-17 mol/kg was covered. We find that the XRS spectral features change systematically at low concentrations and saturate at 11 mol/kg. This behavior suggests a gradual destruction in the hydrogen-bond network until the saturation concentration. The surprisingly large concentration required for the saturation supports an interpretation in which the ions affect the structure of water only within their first hydration shell. The study is complemented by density-functional-theory calculations and molecular dynamics simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA