Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923138

RESUMEN

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.

2.
Plant Physiol ; 189(2): 805-826, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35289902

RESUMEN

Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.


Asunto(s)
Lípidos de la Membrana , Mesembryanthemum , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Estrés Salino , Plantas Tolerantes a la Sal/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(41): 25840-25850, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989137

RESUMEN

Declining insect population sizes are provoking grave concern around the world as insects play essential roles in food production and ecosystems. Environmental contamination by intense insecticide usage is consistently proposed as a significant contributor, among other threats. Many studies have demonstrated impacts of low doses of insecticides on insect behavior, but have not elucidated links to insecticidal activity at the molecular and cellular levels. Here, the histological, physiological, and behavioral impacts of imidacloprid are investigated in Drosophila melanogaster, an experimental organism exposed to insecticides in the field. We show that oxidative stress is a key factor in the mode of action of this insecticide at low doses. Imidacloprid produces an enduring flux of Ca2+ into neurons and a rapid increase in levels of reactive oxygen species (ROS) in the larval brain. It affects mitochondrial function, energy levels, the lipid environment, and transcriptomic profiles. Use of RNAi to induce ROS production in the brain recapitulates insecticide-induced phenotypes in the metabolic tissues, indicating that a signal from neurons is responsible. Chronic low level exposures in adults lead to mitochondrial dysfunction, severe damage to glial cells, and impaired vision. The potent antioxidant, N-acetylcysteine amide (NACA), reduces the severity of a number of the imidacloprid-induced phenotypes, indicating a causal role for oxidative stress. Given that other insecticides are known to generate oxidative stress, this research has wider implications. The systemic impairment of several key biological functions, including vision, reported here would reduce the resilience of insects facing other environmental challenges.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Neuronas/efectos de los fármacos , Nitrocompuestos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Calcio/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Imidazoles/análisis , Imidazoles/toxicidad , Insecticidas/análisis , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neonicotinoides/análisis , Neuronas/metabolismo , Nitrocompuestos/análisis , Estrés Oxidativo/efectos de los fármacos
4.
Plant J ; 107(1): 287-302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866624

RESUMEN

Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Lipidómica/métodos , Lípidos/análisis , Visualización de Datos , Metabolismo Energético , Glucurónidos/análisis , Glucurónidos/metabolismo , Metabolismo de los Lípidos , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Espectrometría de Masas en Tándem/métodos , Triglicéridos/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(9): 3722-3727, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808758

RESUMEN

Staphylococcus aureus is a notorious human bacterial pathogen with considerable capacity to develop antibiotic resistance. We have observed that human infections caused by highly drug-resistant S. aureus are more prolonged, complicated, and difficult to eradicate. Here we describe a metabolic adaptation strategy used by clinical S. aureus strains that leads to resistance to the last-line antibiotic, daptomycin, and simultaneously affects host innate immunity. This response was characterized by a change in anionic membrane phospholipid composition induced by point mutations in the phospholipid biosynthesis gene, cls2, encoding cardiolipin synthase. Single cls2 point mutations were sufficient for daptomycin resistance, antibiotic treatment failure, and persistent infection. These phenotypes were mediated by enhanced cardiolipin biosynthesis, leading to increased bacterial membrane cardiolipin and reduced phosphatidylglycerol. The changes in membrane phospholipid profile led to modifications in membrane structure that impaired daptomycin penetration and membrane disruption. The cls2 point mutations also allowed S. aureus to evade neutrophil chemotaxis, mediated by the reduction in bacterial membrane phosphatidylglycerol, a previously undescribed bacterial-driven chemoattractant. Together, these data illustrate a metabolic strategy used by S. aureus to circumvent antibiotic and immune attack and provide crucial insights into membrane-based therapeutic targeting of this troublesome pathogen.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Proteínas de la Membrana/genética , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Antibacterianos/farmacología , Daptomicina/farmacología , Farmacorresistencia Bacteriana/inmunología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Proteínas de la Membrana/metabolismo , Staphylococcus aureus Resistente a Meticilina/inmunología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
6.
Plant Cell Environ ; 44(12): 3606-3622, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510479

RESUMEN

Chenopodium quinoa (quinoa) is considered a superfood with its favourable nutrient composition and being gluten free. Quinoa has high tolerance to abiotic stresses, such as salinity, water deficit (drought) and cold. The tolerance mechanisms are yet to be elucidated. Quinoa has epidermal bladder cells (EBCs) that densely cover the shoot surface, particularly the younger parts of the plant. Here, we report on the EBC's primary and secondary metabolomes, as well as the lipidome in control conditions and in response to abiotic stresses. EBCs were isolated from plants after cold, heat, high-light, water deficit and salt treatments. We used untargeted gas chromatography-mass spectrometry (GC-MS) to analyse metabolites and untargeted and targeted liquid chromatography-MS (LC-MS) for lipids and secondary metabolite analyses. We identified 64 primary metabolites, including sugars, organic acids and amino acids, 19 secondary metabolites, including phenolic compounds, betanin and saponins and 240 lipids categorized in five groups including glycerolipids and phospholipids. We found only few changes in the metabolic composition of EBCs in response to abiotic stresses; these were metabolites related with heat, cold and high-light treatments but not salt stress. Na+ concentrations were low in EBCs with all treatments and approximately two orders of magnitude lower than K+ concentrations.


Asunto(s)
Chenopodium quinoa/metabolismo , Metabolismo de los Lípidos , Metaboloma , Células Vegetales/metabolismo , Epidermis de la Planta/metabolismo , Chenopodium quinoa/química , Lipidómica , Células Vegetales/química , Epidermis de la Planta/química , Cloruro de Sodio/metabolismo , Estrés Fisiológico
7.
J Exp Bot ; 72(20): 7229-7246, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34279634

RESUMEN

Soil salinity has a serious impact on plant growth and agricultural yield. Inoculation of crop plants with fungal endophytes is a cost-effective way to improve salt tolerance. We used metabolomics to study how Trichoderma harzianum T-22 alleviates NaCl-induced stress in two barley (Hordeum vulgare L.) cultivars, Gairdner and Vlamingh, with contrasting salinity tolerance. GC-MS was used to analyse polar metabolites and LC-MS to analyse lipids in roots during the early stages of interaction with Trichoderma. Inoculation reversed the severe effects of salt on root length in sensitive cv. Gairdner and, to a lesser extent, improved root growth in more tolerance cv. Vlamingh. Biochemical changes showed a similar pattern in inoculated roots after salt treatment. Sugars increased in both cultivars, with ribulose, ribose, and rhamnose specifically increased by inoculation. Salt stress caused large changes in lipids in roots but inoculation with fungus greatly reduced the extent of these changes. Many of the metabolic changes in inoculated cv. Gairdner after salt treatment mirror the response of uninoculated cv. Vlamingh, but there are some metabolites that changed in both cultivars only after fungal inoculation. Further study is required to determine how these metabolic changes are induced by fungal inoculation.


Asunto(s)
Hordeum , Trichoderma , Hypocreales , Lípidos , Raíces de Plantas , Salinidad , Tolerancia a la Sal , Estrés Fisiológico
8.
Hum Mol Genet ; 27(4): 577-588, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29228356

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with complex symptomology. In addition to a predisposition to tumors, children with NF1 can present with reduced muscle mass, global muscle weakness, and impaired motor skills, which can have a significant impact on quality of life. Genetic mouse models have shown a lipid storage disease phenotype may underlie muscle weakness in NF1. Herein we confirm that biopsy specimens from six individuals with NF1 similarly manifest features of a lipid storage myopathy, with marked accumulation of intramyocellular lipid, fibrosis, and mononuclear cell infiltrates. Intramyocellular lipid was also correlated with reductions in neurofibromin protein expression by western analysis. An RNASeq profile of Nf1null muscle from a muscle-specific Nf1 knockout mouse (Nf1MyoD-/-) revealed alterations in genes associated with glucose regulation and cell signaling. Comparison by lipid mass spectrometry demonstrated that Nf1null muscle specimens were enriched for long chain fatty acid (LCFA) containing neutral lipids, such as cholesterol esters and triacylglycerides, suggesting fundamentally impaired LCFA metabolism. The subsequent generation of a limb-specific Nf1 knockout mouse (Nf1Prx1-/-) recapitulated all observed features of human NF1 myopathy, including lipid storage, fibrosis, and muscle weakness. Collectively, these insights led to the evaluation of a dietary intervention of reduced LCFAs, and enrichment of medium-chain fatty acids (MCFAs) with L-carnitine. Following 8-weeks of dietary treatment, Nf1Prx1-/- mice showed a 45% increase in maximal grip strength, and a 71% reduction in intramyocellular lipid staining compared with littermates fed standard chow. These data link NF1 deficiency to fundamental shifts in muscle metabolism, and provide strong proof of principal that a dietary intervention can ameliorate symptoms.


Asunto(s)
Enfermedades Musculares/dietoterapia , Neurofibromatosis 1/dietoterapia , Adolescente , Adulto , Animales , Carnitina/uso terapéutico , Niño , Preescolar , Ácidos Grasos/uso terapéutico , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Ratones Transgénicos , Debilidad Muscular/patología , Debilidad Muscular/terapia , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Calidad de Vida , Adulto Joven
9.
PLoS Pathog ; 14(4): e1007029, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29709018

RESUMEN

Positive-sense RNA virus intracellular replication is intimately associated with membrane platforms that are derived from host organelles and comprised of distinct lipid composition. For flaviviruses, such as West Nile virus strain Kunjin virus (WNVKUN) we have observed that these membrane platforms are derived from the endoplasmic reticulum and are rich in (at least) cholesterol. To extend these studies and identify the cellular lipids critical for WNVKUN replication we utilized a whole cell lipidomics approach and revealed an elevation in phospholipase A2 (PLA2) activity to produce lyso-phosphatidylcholine (lyso-PChol). We observed that the PLA2 enzyme family is activated in WNVKUN-infected cells and the generated lyso-PChol lipid moieties are sequestered to the subcellular sites of viral replication. The requirement for lyso-PChol was confirmed using chemical inhibition of PLA2, where WNVKUN replication and production of infectious virus was duly affected in the presence of the inhibitors. Importantly, we could rescue chemical-induced inhibition with the exogenous addition of lyso-PChol species. Additionally, electron microscopy results indicate that lyso-PChol appears to contribute to the formation of the WNVKUN membranous replication complex (RC); particularly affecting the morphology and membrane curvature of vesicles comprising the RC. These results extend our current understanding of how flaviviruses manipulate lipid homeostasis to favour their own intracellular replication.


Asunto(s)
Retículo Endoplásmico/virología , Riñón/enzimología , Lípidos de la Membrana/metabolismo , Fosfolipasas A2/metabolismo , Replicación Viral , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/patogenicidad , Animales , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Retículo Endoplásmico/enzimología , Riñón/virología , Células Vero , Fiebre del Nilo Occidental/enzimología
10.
New Phytol ; 228(3): 869-883, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32726881

RESUMEN

Endemism and rarity have long intrigued scientists. We focused on a rare endemic and critically-endangered species in a global biodiversity hotspot, Grevillea thelemanniana (Proteaceae). We carried out plant and soil analyses of four Proteaceae, including G. thelemanniana, and combined these with glasshouse studies. The analyses related to hydrology and plant water relations as well as soil nutrient concentrations and plant nutrition, with an emphasis on sodium (Na) and calcium (Ca). The local hydrology and matching plant traits related to water relations partially accounted for the distribution of the four Proteaceae. What determined the rarity of G. thelemanniana, however, was its accumulation of Ca. Despite much higher total Ca concentrations in the leaves of the rare G. thelemanniana than in the common Proteaceae, very few Ca crystals were detected in epidermal or mesophyll cells. Instead of crystals, G. thelemanniana epidermal cell vacuoles contained exceptionally high concentrations of noncrystalline Ca. Calcium ameliorated the negative effects of Na on the very salt-sensitive G. thelemanniana. Most importantly, G. thelemanniana required high concentrations of Ca to balance a massively accumulated feeding-deterrent carboxylate, trans-aconitate. This is the first example of a calcicole species accumulating and using Ca to balance accumulation of an antimetabolite.


Asunto(s)
Proteaceae , Calcio , Células del Mesófilo , Hojas de la Planta , Suelo
11.
Plant Cell Environ ; 43(2): 327-343, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31714612

RESUMEN

Salinity-induced metabolic, ionic, and transcript modifications in plants have routinely been studied using whole plant tissues, which do not provide information on spatial tissue responses. The aim of this study was to assess the changes in the lipid profiles in a spatial manner and to quantify the changes in the elemental composition in roots of seedlings of four barley cultivars before and after a short-term salt stress. We used a combination of liquid chromatography-tandem mass spectrometry, inductively coupled plasma mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry imaging, and reverse transcription - quantitative real time polymerase chain reaction platforms to examine the molecular signatures of lipids, ions, and transcripts in three anatomically different seminal root tissues before and after salt stress. We found significant changes to the levels of major lipid classes including a decrease in the levels of lysoglycerophospholipids, ceramides, and hexosylceramides and an increase in the levels of glycerophospholipids, hydroxylated ceramides, and hexosylceramides. Our results revealed that modifications to lipid and transcript profiles in plant roots in response to a short-term salt stress may involve recycling of major lipid species, such as phosphatidylcholine, via resynthesis from glycerophosphocholine.


Asunto(s)
Hordeum/metabolismo , Lipidómica/métodos , Lípidos/análisis , Raíces de Plantas/metabolismo , Salinidad , Estrés Salino/fisiología , Ceramidas/análisis , Cromatografía Liquida/métodos , Regulación de la Expresión Génica de las Plantas , Glicerofosfolípidos/análisis , Hordeum/efectos de los fármacos , Hordeum/genética , Iones/metabolismo , Metabolismo de los Lípidos/genética , Metaboloma , Metabolómica , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Estrés Salino/genética , Sales (Química)/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos
12.
Metabolomics ; 15(11): 144, 2019 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31630279

RESUMEN

INTRODUCTION: Frost events lead to A$360 million of yield losses annually to the Australian wheat industry, making improvement of chilling and frost tolerance an important trait for breeding. OBJECTIVES: This study aimed to use metabolomics and lipidomics to explore genetic variation in acclimation potential to chilling and to identify metabolite markers for chilling tolerance in wheat. METHODS: We established a controlled environment screening assay that is able to reproduce field rankings of wheat germplasm for chilling and frost tolerance. This assay, together with targeted metabolomics and lipidomics approaches, were used to compare metabolite and lipid levels in flag leaves of two wheat varieties with contrasting chilling tolerance. RESULTS: The sensitive variety Wyalkatchem showed a strong reduction in amino acids after the first cold night, followed by accumulation of osmolytes such as fructose, glucose, putrescine and shikimate over a 4-day period. Accumulation of osmolytes is indicative of acclimation to water stress in Wyalkatchem. This response was not observed for tolerant variety Young. The two varieties also displayed significant differences in lipid accumulation. Variation in two lipid clusters, resulted in a higher unsaturated to saturated lipid ratio in Young after 4 days cold treatment and the lipids PC(34:0), PC(34:1), PC(35:1), PC(38:3), and PI(36:4) were the main contributors to the unsaturated to saturated ratio change. This indicates that Young may have superior ability to maintain membrane fluidity following cold exposure, thereby avoiding membrane damage and water stress observed for Wyalkatchem. CONCLUSION: Our study suggests that metabolomics and lipidomics markers could be used as an alternative phenotyping method to discriminate wheat varieties with differences in cold acclimation.


Asunto(s)
Adaptación Fisiológica , Respuesta al Choque por Frío , Metabolómica , Triticum/metabolismo , Lipidómica , Fenotipo
13.
Proc Natl Acad Sci U S A ; 113(7): 1901-6, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831115

RESUMEN

Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis.


Asunto(s)
Aldehído-Liasas/metabolismo , Autofagia , Legionella pneumophila/enzimología , Esfingolípidos/metabolismo , Aldehído-Liasas/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Enfermedad de los Legionarios/inmunología , Ratones , Conformación Proteica
14.
Plant Cell Environ ; 41(10): 2390-2403, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29813189

RESUMEN

Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study, alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and phospholipase D delta suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates that the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion.


Asunto(s)
Metabolismo de los Lípidos , Mesembryanthemum/metabolismo , Epidermis de la Planta/citología , Plantas Tolerantes a la Sal/metabolismo , Lípidos de la Membrana/metabolismo , Mesembryanthemum/citología , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Epidermis de la Planta/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/metabolismo , Estrés Salino , Plantas Tolerantes a la Sal/citología , Sodio/metabolismo , Triglicéridos/metabolismo
15.
PLoS Pathog ; 11(9): e1005136, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26334531

RESUMEN

Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites.


Asunto(s)
Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Interacciones Huésped-Parásitos , Leishmania major/fisiología , Lisosomas/parasitología , Macrófagos/parasitología , Fagocitosis , Acetilglucosamina/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Matriz Extracelular/inmunología , Matriz Extracelular/patología , Eliminación de Gen , Hidrólisis , Cinética , Leishmania major/genética , Leishmania major/crecimiento & desarrollo , Leishmania major/inmunología , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/inmunología , Leishmania mexicana/fisiología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad de la Especie , Organismos Libres de Patógenos Específicos
16.
Plant Cell Environ ; 40(9): 1900-1915, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28558173

RESUMEN

Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.


Asunto(s)
Atriplex/fisiología , Chenopodium quinoa/fisiología , Epidermis de la Planta/citología , Tolerancia a la Sal/fisiología , Plantas Tolerantes a la Sal/fisiología , Estrés Fisiológico , Atriplex/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chenopodium quinoa/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Transporte Iónico/efectos de los fármacos , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Metaboloma , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Tolerancia a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Sacarosa/farmacología , Ácido gamma-Aminobutírico/farmacología
18.
Mol Microbiol ; 97(1): 64-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25825226

RESUMEN

Apicomplexa are parasitic protozoa that cause important human diseases including malaria, cryptosporidiosis and toxoplasmosis. The replication of these parasites within their target host cell is dependent on both salvage as well as de novo synthesis of fatty acids. In Toxoplasma gondii, fatty acid synthesis via the apicoplast-localized FASII is essential for pathogenesis, while the role of two other fatty acid biosynthetic complexes remains unclear. Here, we demonstrate that the ER-localized fatty acid elongation (ELO) complexes are essential for parasite growth. Conditional knockdown of the nonredundant hydroxyacyl-CoA dehydratase and enoyl-CoA reductase enzymes in the ELO pathway severely repressed intracellular parasite growth. (13) C-glucose and (13) C-acetate labeling and comprehensive lipidomic analyses of these mutants showed a selective defect in synthesis of unsaturated long and very long-chain fatty acids (LCFAs and VLCFAs) and depletion of phosphatidylinositol and phosphatidylethanolamine species containing unsaturated LCFAs and VLCFAs. This requirement for ELO pathway was bypassed by supplementing the media with specific fatty acids, indicating active but inefficient import of host fatty acids. Our experiments highlight a gap between the fatty acid needs of the parasite and availability of specific fatty acids in the host cell that the parasite has to close using a dedicated synthesis and modification pathway.


Asunto(s)
Ácidos Grasos Insaturados/biosíntesis , Interacciones Huésped-Parásitos , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo , Animales , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Acido Graso Sintasa Tipo II/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Complejos Multienzimáticos/metabolismo , Mutación , Toxoplasma/enzimología , Toxoplasma/genética
19.
Proc Natl Acad Sci U S A ; 110(18): 7506-11, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589867

RESUMEN

The human malaria parasite Plasmodium falciparum harbors a relict, nonphotosynthetic plastid of algal origin termed the apicoplast. Although considerable progress has been made in defining the metabolic functions of the apicoplast, information on the composition and biogenesis of the four delimiting membranes of this organelle is limited. Here, we report an efficient method for preparing highly purified apicoplasts from red blood cell parasite stages and the comprehensive lipidomic analysis of this organelle. Apicoplasts were prepared from transgenic parasites expressing an epitope-tagged triosephosphate transporter and immunopurified on magnetic beads. Gas and liquid chromatography MS analyses of isolated apicoplast lipids indicated significant differences compared with total parasite lipids. In particular, apicoplasts were highly enriched in phosphatidylinositol, consistent with a suggested role for phosphoinositides in targeting membrane vesicles to apicoplasts. Apicoplast phosphatidylinositol and other phospholipids were also enriched in saturated fatty acids, which could reflect limited acyl exchange with other membrane phospholipids and/or a requirement for specific physical properties. Lipids atypical for plastids (sphingomyelins, ceramides, and cholesterol) were detected in apicoplasts. The presence of cholesterol in apicoplast membranes was supported by filipin staining of isolated apicoplasts. Galactoglycerolipids, dominant in plant and algal plastids, were not detected in P. falciparum apicoplasts, suggesting that these glycolipids are a hallmark of photosynthetic plastids and were lost when these organisms assumed a parasitic lifestyle. Apicoplasts thus contain an atypical melange of lipids scavenged from the human host alongside lipids remodeled by the parasite cytoplasm, and stable isotope labeling shows some apicoplast lipids are generated de novo by the organelle itself.


Asunto(s)
Lípidos/química , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Plastidios/química , Colesterol/metabolismo , Cromatografía Liquida , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Metabolismo de los Lípidos , Plasmodium falciparum/ultraestructura , Plastidios/ultraestructura
20.
Mol Microbiol ; 91(4): 762-76, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24350823

RESUMEN

Intra-erythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo-inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P. falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo-inositol-3-phosphate, indicating increased de novo biosynthesis of myo-inositol from glucose 6-phosphate. Metabolic labelling studies with (13) C-U-glucose in the presence and absence of exogenous inositol confirmed that de novo myo-inositol synthesis occurs in parallel with myo-inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo-inositol was used to synthesize bulk PI, only de novo-synthesized myo-inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo-inositol 3-phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P. falciparum asexual stages are critically dependent on de novo myo-inositol biosynthesis for assembly of a sub-pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P. falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways.


Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Glucolípidos/metabolismo , Inositol/biosíntesis , Plasmodium falciparum/fisiología , Eritrocitos/parasitología , Glucosa-6-Fosfato/metabolismo , Humanos , Marcaje Isotópico , Plasmodium falciparum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA