Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003354

RESUMEN

Surface-enhanced Raman scattering (SERS) is of growing interest for a wide range of applications, especially for biomedical analysis, thanks to its sensitivity, specificity, and multiplexing capabilities. A crucial role for successful applications of SERS is played by the development of reproducible, efficient, and facile procedures for the fabrication of metal nanostructures (SERS substrates). Even more challenging is to extend the fabrication techniques of plasmonic nano-textures to atomic force microscope (AFM) probes to carry out tip-enhanced Raman spectroscopy (TERS) experiments, in which spatial resolution below the diffraction limit is added to the peculiarities of SERS. In this short review, we describe recent studies performed by our group during the last ten years in which novel nanofabrication techniques have been successfully applied to SERS and TERS experiments for studying bio-systems and molecular species of environmental interest.


Asunto(s)
Nanoestructuras , Espectrometría Raman , Espectrometría Raman/métodos , Nanoestructuras/química , Metales
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569474

RESUMEN

The development of sensitive methods for the detection of endotoxin molecules, such as lipopolysaccharides (LPS), is essential for food safety and health control. Conventional analytical methods used for LPS detection are based on the pyrogen test, plating and culture-based methods, and the limulus amoebocyte lysate method (LAL). Alternatively, the development of reliable biosensors for LPS detection would be highly desirable to solve some critical issues, such as high cost and a long turnaround time. In this work, we present a label-free Surface-Enhanced Raman Spectroscopy (SERS)-based method for LPS detection in its free form. The proposed method combines the benefits of plasmonic enhancement with the selectivity provided by a specific anti-lipid A antibody (Ab). A high-enhancing nanostructured silver substrate was coated with Ab. The presence of LPS was quantitatively monitored by analyzing the changes in the Ab spectra obtained in the absence and presence of LPS. A limit of detection (LOD) and quantification (LOQ) of 12 ng/mL and 41 ng/mL were estimated, respectively. Importantly, the proposed technology could be easily expanded for the determination of other biological macromolecules.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Animales , Endotoxinas , Lipopolisacáridos , Espectrometría Raman , Cangrejos Herradura , Nanopartículas del Metal/química
3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445624

RESUMEN

The pursuit of environmentally friendly solvents has become an essential research topic in sustainable chemistry and nanomaterial science. With the need to substitute toxic solvents in nanofabrication processes becoming more pressing, the search for alternative solvents has taken on a crucial role in this field. Additionally, the use of toxic, non-economical organic solvents, such as N-methyl-2 pyrrolidone and dimethylformamide, is not suitable for all biomedical applications, even though these solvents are often considered as the best exfoliating agents for nanomaterial fabrication. In this context, the success of producing two-dimensional transition metal dichalcogenides (2D TMDs), such as MoS2 and WS2, with excellent captivating properties is due to the ease of synthesis based on environment-friendly, benign methods with fewer toxic chemicals involved. Herein, we report for the first time on the use of cyrene as an exfoliating agent to fabricate monolayer and few-layered 2D TMDs with a versatile, less time-consuming liquid-phase exfoliation technique. This bio-derived, aprotic, green and eco-friendly solvent produced a stable, surfactant-free, concentrated 2D TMD dispersion with very interesting features, as characterized by UV-visible and Raman spectroscopies. The surface charge and morphology of the fabricated nanoflakes were analyzed using ς-potential and scanning electron microscopy. The study demonstrates that cyrene is a promising green solvent for the exfoliation of 2D TMD nanosheets with potential advantages over traditional organic solvents. The ability to produce smaller-sized-especially in the case of WS2 as compared to MoS2-and mono/few-layered nanostructures with higher negative surface charge values makes cyrene a promising candidate for various biomedical and electronic applications. Overall, the study contributes to the development of sustainable and environmentally friendly methods for the production of 2D nanomaterials for various applications.


Asunto(s)
Nanoestructuras , Elementos de Transición , Solventes , Molibdeno/química , Elementos de Transición/química , Nanoestructuras/química
4.
Sensors (Basel) ; 22(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35408378

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are typically released into the environment during the incomplete combustion of fossil fuels. Due to their relevant carcinogenicity, mutagenicity, and teratogenicity, it is urgent to develop sensitive and cost-effective strategies for monitoring them, especially in aqueous environments. Surface-enhanced Raman spectroscopy (SERS) can potentially be used as a reliable approach for this purpose, as it constitutes a valid alternative to traditional techniques, such as liquid and gas chromatography. Nevertheless, the development of an SERS-based platform for detection PAHs has so far been hindered by the poor adsorption of PAHs onto silver- and gold-based SERS-active substrates. To overcome this limitation, several research efforts have been directed towards the development of functionalized SERS substrates for the improvement of PAH adsorption. However, these strategies suffer from the interference that functionalizing molecules can produce in SERS detection. Herein, we demonstrate the feasibility of label-free detection of pyrene by using a highly porous 3D-SERS substrate produced by an inductively coupled plasma (ICP). Thanks to the coral-like nanopattern exhibited by our substrate, clear signals ascribable to pyrene molecules can be observed with a limit of detection of 23 nM. The observed performance can be attributed to the nanoporous character of our substrate, which combines a high density of hotspots and a certain capability of trapping molecules and favoring their adhesion to the Ag nanopattern. The obtained results demonstrate the potential of our substrates as a large-area, label-free SERS-based platform for chemical sensing and environmental control applications.


Asunto(s)
Nanopartículas del Metal , Hidrocarburos Policíclicos Aromáticos , Estudios de Factibilidad , Nanopartículas del Metal/química , Hidrocarburos Policíclicos Aromáticos/análisis , Porosidad , Pirenos , Plata/química , Espectrometría Raman/métodos , Agua
5.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614044

RESUMEN

Nanoparticles (NPs) coated with hyaluronic acid (HA) seem to be increasingly promising for targeted therapy due to HA chemical versatility, which allows them to bind drugs of different natures, and their affinity with the transmembrane receptor CD-44, overexpressed in tumor cells. However, an essential aspect for clinical use of NPs is formulation stability over time. For these reasons, analytical techniques capable of characterizing their physico-chemical properties are needed. In this work, poly(lactide-co-glycolide) (PLGA) NPs with an average diameter of 100-150 nm, coated with a few 10 s of nm of HA, were synthesized. For stability characterization, two complementary investigative techniques were used: Dynamic Light Scattering (DLS) and Surface-Enhanced Raman Scattering (SERS) spectroscopy. The first technique provided information on size, polidispersity index, and zeta-potential, and the second provided a deeper insight on the NP surface chemicals, allowing distinguishing of HA-coated NPs from uncoated ones. Furthermore, in order to estimate formulation stability over time, NPs were measured and monitored for two weeks. SERS results showed a progressive decrease in the signal associated with HA, which, however, is not detectable by the DLS measurements.


Asunto(s)
Nanopartículas , Espectrometría Raman , Ácido Hialurónico/química , Nanopartículas/química , Portadores de Fármacos
6.
Sensors (Basel) ; 19(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382386

RESUMEN

Tear fluid is a heterogeneous solution containing mainly proteins, lipids, mucins and electrolytes, which regulates the physiology of the human eye. The complex composition of tears can be altered in the presence of eye inflammations. The use of contact lenses is one of the most frequent causes of inflammatory responses of the eye, with the related discomfort often causing the wearer to give up using them. In this paper, we exploit the potentiality of Raman Spectroscopy to analyse the biochemical changes in tear fluid in a contact lens wearer. In particular, we analysed the tear fluid collected from a volunteer as a function of the wearing time for two types of monthly contact lenses (Hydrogel and Si-Hydrogel). Our experimental results show an alteration of the relative concentrations of proteins and lipids in both of the analysed cases. More importantly, our results highlight the diagnostic sensitivity of Raman analysis to select the proper contact lens type for each wearer and optimise the lens wearing conditions.


Asunto(s)
Espectrometría Raman , Lágrimas/química , Lentes de Contacto , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lípidos/análisis , Análisis de Componente Principal , Proteínas/análisis , Lágrimas/metabolismo
7.
Biochim Biophys Acta ; 1860(4): 795-801, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26820473

RESUMEN

BACKGROUND: About twenty variants of apolipoprotein A-I (ApoA-I) are associated to hereditary systemic amyloidoses. Although the molecular bases of this disease are still largely unknown, it has been hypothesized that ApoA-I proteolysis is a key event in pathogenesis, since it triggers the release of an N-terminal fragment (80-100 residue long) that misfolds to form amyloid deposits in peripheral organs and tissues. It is also known that cell membrane lipids play a key role in the fibrillogenic pathway. In the case of ApoA-I related amyloidosis caused by L174S mutation, the 93-residue N-terminal fragment of ApoA-I ([1-93]ApoA-I) was found to be the major constituent of ex vivo fibrils. METHODS: With the main goal to investigate the interaction of either [1-93]ApoA-I and ApoA-I with biomimetic membranes, we set-up an experimental system based on the Raman Tweezers methodology. We tested GUVs composed by two types of zwitterionic lipids with a different fluidity degree, i.e. dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC). RESULTS: We found that [1-93]ApoA-I induces conformational disorder in an ordered lipid bilayer. When interacting with fluid phases, instead, the fragment was found to be able to penetrate the membrane bilayer inducing an alignment of lipid chains. CONCLUSIONS: The interaction features of [1-93]ApoA-I with biomimetic membranes strongly depend on the lipid phase. Full-length ApoA-I was found to have similar effects, even if significantly less pronounced. GENERAL SIGNIFICANCE: Our observations shed light on still largely unknown molecular bases of ApoA-I fibrillogenic domain interaction with membranes.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Amiloide/química , Apolipoproteína A-I/química , Membrana Dobles de Lípidos/química , Membranas Artificiales , Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Amiloide/metabolismo , Apolipoproteína A-I/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/metabolismo , Estructura Terciaria de Proteína
8.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1222-1228, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27913190

RESUMEN

BACKGROUND: G-quadruplex DNA is involved in many physiological and pathological processes. Both clinical and experimental studies on DNA G-quadruplexes are slowed down by their enzymatic instability. In this frame, more stable chemically modified analogs are needed. METHODS: The bis-end-linked-(gggt)2 PNA molecule (BEL-PNA) was synthesized using in solution and solid phase synthetic approaches. Quadruplex formation was assessed by circular dichroism (CD) and surface enhanced Raman scattering (SERS). RESULTS: An unprecedented bimolecular PNA homo quadruplex is here reported. To achieve this goal, we developed a bifunctional linker that once functionalized with gggt PNA strands and annealed in K+ buffer allowed the obtainment of a PNA homo quadruplex. The identification of the strong SERS band at ~1481cm-1, attributable to vibrations involving the quadruplex diagnostic Hoogsteen type hydrogen bonds, confirmed the formation of the PNA homo quadruplex. CONCLUSIONS: By tethering two G-rich PNA strands to the two ends of a suitable bifunctional linker it is possible to obtain bimolecular PNA homo quadruplexes after annealing in K+-containing buffers. The formation of such CD-unfriendly complexes can be monitored, even at low concentrations, by using the SERS technique. GENERAL SIGNIFICANCE: Given the importance of DNA G-quadruplexes in medicine and nanotechnology, the obtainment of G-quadruplex analogs provided with enhanced enzymatic stability, and their monitoring by highly sensitive label-free techniques are of the highest importance. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Asunto(s)
G-Cuádruplex , Guanina/química , Ácidos Nucleicos de Péptidos/química , Secuencia de Bases , Dicroismo Circular , Enlace de Hidrógeno , Modelos Moleculares , Espectrometría Raman , Relación Estructura-Actividad
9.
Opt Express ; 24(12): 13584-9, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410374

RESUMEN

We numerically investigate the optical response of slowly scaling linear chains of mismatched silver nanoparticles. Hybridized plasmon chain resonances manifest unusual local field distributions around the nanoparticles that result from symmetry breaking of the geometry. Importantly, we find localization patterns characterized by bright hot-spots alternated by what we term dark spots. A dark spot is associated to dark plasmons that have collinear and antiparallel dipole moments along the chain. As a result, the field amplification in the dark interjunction gap is extinguished for incident polarization parallel to the chain axis. Despite the strong plasmonic coupling, the nanoparticles on the sides of this dark gap experience a dramatic asymmetric field amplification with amplitude gain contrast > 2×102. Remarkably, also for polarization orthogonal to the axis, gap hot-spots form on resonance.

10.
J Chem Phys ; 145(5): 054708, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27497573

RESUMEN

Suitable metal nanostructures may induce surface-enhanced Raman scattering (SERS) enhancement factors (EFs) large-enough to reach single-molecule sensitivity. However, the gap hot-spot EF probability density function (PDF) has the character of a long-tail distribution, which dramatically mines the reproducibility of SERS experiments. Herein, we carry out electrodynamic calculations based on a 3D finite element method of two plasmonic nanostructures, combined with Monte Carlo simulations of the EF statistics under different external conditions. We compare the PDF produced by a homodimer of nanoparticles with that provided by a self-similar trimer. We show that the PDF is sensitive to the spatial distribution of near-field enhancement specifically supported by the nanostructure geometry. Breaking the symmetry of the plasmonic system is responsible for inducing particular modulations of the PDF tail resembling a multiple Poisson distribution. We also study the influence that molecular diffusion towards the hottest hot-spot, or selective hot-spot targeting, might have on the EF PDF. Our results quantitatively assess the possibility of designing the response of a SERS substrate so as to contain the intrinsic EF PDF variance and significantly improving, in principle, the reproducibility of SERS experiments.

11.
Opt Express ; 23(7): 9363-8, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968766

RESUMEN

Herein, charged microbeads handled with optical tweezers are used as a sensitive probe for simultaneous measurements of electrophoretic and dielectrophoretic forces. We first determine the electric charge carried by a single bead by keeping it in a predictable uniform electric field produced by two parallel planar electrodes, then, we examine same bead's response in proximity to a tip electrode. In this case, besides electric forces, the bead simultaneously experiences non-negligible dielectrophoretic forces produced by the strong electric field gradient. The stochastic and deterministic motions of the trapped bead are theoretically and experimentally analysed in terms of the autocorrelation function. By fitting the experimental data, we are able to extract simultaneously the spatial distribution of electrophoretic and dielectrophoretic forces around the tip. Our approach can be used for determining actual, total force components in the presence of high-curvature electrodes or metal scanning probe tips.

12.
Electrophoresis ; 34(22-23): 3141-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24166681

RESUMEN

In this study, we report a systematic study of the response of a charged microparticle confined in an optical trap and driven by electric fields. The particle is embedded in a polar fluid, hence, the role of ions and counterions forming a double layer around the electrodes and the particle surface itself has been taken into account. We analyze two different cases: (i) electrodes energized by a step-wise voltage (DC mode) and (ii) electrodes driven by a sinusoidal voltage (AC mode). The experimental outcomes are analyzed in terms of a model that combines the electric response of the electrolytic cell and the motion of the trapped particle. In particular, for the DC mode we analyze the transient particle motion and correlate it with the electric current flowing in the cell. For the AC mode, the stochastic and deterministic motion of the trapped particle is analyzed either in the frequency domain (power spectral density, PSD) or in the time domain (autocorrelation function). Moreover, we will show how these different approaches (DC and AC modes) allow us, assuming predictable the applied electric field (here generated by plane parallel electrodes), to provide accurate estimation (3%) of the net charge carried by the microparticle. Vice versa, we also demonstrate how, once predetermined the charge, the trapped particle acts as a sensitive probe to reveal locally electric fields generated by arbitrary electrode geometries (in this work, wire-tip geometry).


Asunto(s)
Coloides/química , Electroforesis/instrumentación , Iones/química , Pinzas Ópticas , Electricidad , Electrodos , Diseño de Equipo , Tamaño de la Partícula
13.
Environ Toxicol Pharmacol ; 102: 104235, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481049

RESUMEN

Benzodiazepines, psychotropic drugs, are among the most frequently found pharmaceuticals in aquatic matrices. An increasing number of studies are reporting their harmful effects on adults' behaviour and physiology, while little information is available regarding developing organisms exposed since early stages. Improper activation of GABA receptors during embryonic development is likely to induce relevant consequences on the morphogenesis and, at later stages, on behaviour. This study investigated the negative effects of three increasing concentrations of delorazepam on Xenopus laevis retinal and skeletal muscle morphogenesis. Morphological and ultrastructural investigations were correlated with gene expression, while Raman spectroscopy highlighted the main biochemical components affected. Conventional phototactic response and orientation in the magnetic field were assessed as indicators of proper interaction between sensory organs and the nervous system. Results confirm the profound impact of delorazepam on development and return an alarming picture of the amphibians' survival potentialities in a benzodiazepine-contaminated environment.


Asunto(s)
Benzodiazepinas , Músculo Esquelético , Femenino , Animales , Xenopus laevis , Benzodiazepinas/toxicidad , Psicotrópicos/toxicidad , Retina
14.
Front Bioeng Biotechnol ; 10: 844011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360403

RESUMEN

Two-dimensional nanomaterials, such as MoS2 nanosheets, have been attracting increasing attention in cancer diagnosis and treatment, thanks to their peculiar physical and chemical properties. Although the mechanisms which regulate the interaction between these nanomaterials and cells are not yet completely understood, many studies have proved their efficient use in the photothermal treatment of cancer, and the response to MoS2 nanosheets at the single-cell level is less investigated. Clearly, this information can help in shedding light on the subtle cellular mechanisms ruling the interaction of this 2D material with cells and, eventually, to its cytotoxicity. In this study, we use confocal micro-Raman spectroscopy to reconstruct the thermal map of single cells targeted with MoS2 under continuous laser irradiation. The experiment is performed by analyzing the water O-H stretching band around 3,400 cm-1 whose tetrahedral structure is sensitive to the molecular environment and temperature. Compared to fluorescence-based approaches, this Raman-based strategy for temperature measurement does not suffer fluorophore instability, which can be significant under continuous laser irradiation. We demonstrate that irradiation of human breast cancer MCF7 cells targeted with MoS2 nanosheets causes a relevant photothermal effect, which is particularly high in the presence of MoS2 nanosheet aggregates. Laser-induced heating is strongly localized near such particles which, in turn, tend to accumulate near the cytoplasmic membrane. Globally, our experimental outcomes are expected to be important for tuning the nanosheet fabrication process.

15.
Anal Chem ; 83(17): 6849-55, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21780762

RESUMEN

In this work, we establish the use of surface-enhanced Raman scattering (SERS) as a label-free analytical technique for the direct detection of G-quadruplex formation. In particular, we demonstrate that SERS analysis allows the evaluation of the relative stability of G quadruplexes that differ for the number of G tetrads and investigate several structural features of quadruplexes, such as the orientation of glycosidic bonds, the identification of distortions in the sugar-phosphate backbone, and the degree of hydrogen-bond solvation. Herein, the fluctuation of the SERS spectra, due to the specific interaction of vibrational modes with the SERS-active substrate, is quantitatively analyzed before and after quadruplex formation. The results of this study suggest a perpendicular orientation of the quadruplexes (with or without the 3'-tetra end linker) with respect to the silver colloidal surface, which opens new perspectives for the use of SERS as a label-free analytical tool for the study of the binding mode between quadruplexes and their ligands.


Asunto(s)
G-Cuádruplex , Espectrometría Raman/métodos , Dicroismo Circular , Coloides/química , Plata/química
16.
Methods ; 51(1): 27-36, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20035873

RESUMEN

This work reports on the application of Raman spectroscopy for the analysis of Xenopus laevis oocytes (stage-I). A two-color home-made microscope has been used for this investigation. In particular, a 785nm Raman probe has been used to acquire the spontaneous Raman scattering from the oocyte cytoplasm, while a 532nm probe has been employed to detect carotenoids through Resonant Raman Scattering. Finally, the distribution of beta-carotene along a diameter of a single oocyte has been investigated.


Asunto(s)
Oocitos/metabolismo , Espectrometría Raman/métodos , Xenopus laevis/metabolismo , Algoritmos , Animales , Carotenoides/química , Citoplasma/metabolismo , Diseño de Equipo , Femenino , Humanos , Luz , Microscopía/métodos , Fotoquímica/métodos , Dispersión de Radiación
17.
Methods ; 51(1): 20-6, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20035872

RESUMEN

Cell mechanical properties play an important role in determining many cellular activities. Passive microrheology techniques, such as Multiple-Particle-Tracking (MPT) give an insight into the structural rearrangements and viscoelastic response of a wide range of materials, in particular soft materials and complex fluids like cell cytoplasm in living cells. The technique finds an important field of application in large cells such as oocytes where, during their growth, several organelles and molecules are displaced in specific territories of the cell instrumental for later embryonic development. To measure cell mechanics, cells are usually deformed by many techniques that are slow and often invasive. To overcome these limits, the MPT technique is applied. Probe particles are embedded in the viscoelastic sample and their properties are extracted from the thermal fluctuation spectra measured using digital video-microscopy. The Brownian motion of a probe particle immersed in a network is directly related to the network's mechanical properties. Particles exhibit larger motions when their local environments are less rigid or less viscous. The mean-square-displacement (MSD) of the particle's trajectory is used to quantify its amplitude of motions over different time scales.


Asunto(s)
Biofisica/métodos , Viscosidad , Animales , Células COS , Chlorocebus aethiops , Técnicas Citológicas , Citoplasma/metabolismo , Elasticidad , Microscopía por Video/métodos , Modelos Biológicos , Sondas de Oligonucleótidos/metabolismo , Oocitos/metabolismo , Tamaño de la Partícula , Reología , Xenopus laevis/metabolismo
18.
Sci Rep ; 11(1): 22295, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785690

RESUMEN

The fabrication of plasmonic nanostructures with a reliable, low cost and easy approach has become a crucial and urgent challenge in many fields, including surface-enhanced Raman spectroscopy (SERS) based applications. In this frame, nanoporous metal films are quite attractive, due to their intrinsic large surface area and high density of metal nanogaps, acting as hot-spots for Raman signal enhancement. In this paper, we report a detailed study on the fabrication of nanoporous silver-based SERS substrates, obtained by the application of two successive treatments with an Inductively Coupled Plasma (ICP) system, using synthetic air and Ar as feeding gases. The obtained substrates exhibit a quite broad plasmonic response, covering the Vis-NIR range, and an enhancement factor reaching 6.5 [Formula: see text], estimated by using 4-mercaptobenzoic acid (4-MBA) as probe molecule at 532 nm. Moreover, the substrates exhibit a quite good spatial reproducibility on a centimeter scale, which assures a good signal stability for analytical measurements. Globally, the developed protocol is easy and cost effective, potentially usable also for mass production thanks to the remarkable inter-batches reproducibility. As such, it holds promise for its use in SERS-based sensing platforms for sensitive detection of targets molecules.

19.
Opt Express ; 18(3): 2116-26, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20174040

RESUMEN

Optical tweezers have become a powerful tool to explore the viscoelasticity of complex fluids at micrometric scale. In the experiments, the Brownian trajectories of optically confined microparticles are properly analysed to provide the viscous and elastic moduli G' and G'. Nevertheless, the elastic response of the medium is inherently superimposed on the trap stiffness itself. Usually, this drawback is removed by subtracting the elastic trap contribution from the measured medium response. However, it is clear that when trap and medium elasticity become comparable this procedure is no longer reliable. Still, there exists a wide class of complex fluids that exhibit a low elasticity (diluted biopolymers, Boger fluids, etc) for which alternative experimental approaches would be desirable. Herein we propose a new method based on blinking optical tweezers. It makes use of two independent laser beams: the first is used to trap a single bead while the second one, of very weak power, acts as probe to monitor its position with a quadrant photodiode. The trap laser intensity is modulated on-off: when the laser is off the bead follows a free diffusion trajectory that, hence, leads to an estimation of G' and G' free of the influence of the trap. We have successfully applied this technique to highly-diluted hyaluronic acid solutions (c < 0.1 mg/ml) reaching to measure very weak G' modulus ( approximately 0.01 Pa) in a wide range of frequencies.

20.
Nanoscale ; 12(48): 24376-24384, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33179660

RESUMEN

Tip-enhanced Raman spectroscopy is a powerful tool for the analysis of system interfaces, enabling access to chemical information with nanometric spatial resolution and sensitivity up to the single molecule level. Such features are due to the presence of proper metallic nanostructures at the TERS probe apex, which, via the excitation of a plasmonic field, confine light to a nanometric region. The nano-sized characteristic of such metallic structures intrinsically renders the fabrication of high performing and reproducible TERS probes still a challenge. In this paper, we present a facile, rapid and effective approach to prepare Ag-based TERS probes. The fabrication process proposed herein is based on spinodal dewetting of Ag-coated AFM-probes through a RF plasma treatment. The obtained probes appear covered with a coral-like silver nanotexture, endowed with an excellent plasmonic activity. Intriguingly, such a texture can be easily tuned by changing some process parameters, such as Ag film thickness and exposure time to the plasma. The as-prepared TERS probes show a high TERS enhancement, reaching 107, and allow a good spatial resolution, down to 10 nm. Finally, we suggest an easy and effective procedure to restore oxidized TERS tips following exposure to ambient air, which can be applied to all types of Ag-based TERS tips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA