Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phys Rev Lett ; 130(10): 106702, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36962040

RESUMEN

We combine spin-polarized scanning tunneling microscopy with quantum master equation analysis to investigate the spin dynamics of the single atom magnet Dy on graphene/Ir(111). By performing reading and writing experiments, we show that the strongly spin polarized 5d6s valence shells, as well as their intra-atomic exchange coupling to the 4f shell, determine the pathways for magnetization relaxation and thus the spin dynamics. The good quantum number that determines which states are stable and which mechanisms for reversal exist in a given crystal field is the atomic total angular momentum J_{z}^{tot} and not the commonly considered J_{z}^{4f} of the 4f shell only.

2.
Phys Rev Lett ; 124(7): 077204, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142323

RESUMEN

We investigate the spin relaxation of Ho single atom magnets on MgO/Ag(100) as a function of temperature and magnetic field. We find that the spin relaxation is thermally activated at low field, while it remains larger than 1000 s up to 30 K and 8 T. This behavior contrasts with that of single molecule magnets and bulk paramagnetic impurities, which relax faster at high field. Combining our results with density functional theory, we rationalize this unconventional behavior by showing that local vibrations activate a two-phonon Raman process with a relaxation rate that peaks near zero field and is suppressed at high field. Our work shows the importance of these excitations in the relaxation of axially coordinated magnetic atoms.

3.
Nat Mater ; 15(3): 278-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26641020

RESUMEN

Advances in growth technology of oxide materials allow single atomic layer control of heterostructures. In particular delta doping, a key materials' engineering tool in today's semiconductor technology, is now also available for oxides. Here we show that a fully electric-field-tunable spin-polarized and superconducting quasi-2D electron system (q2DES) can be artificially created by inserting a few unit cells of delta doping EuTiO3 at the interface between LaAlO3 and SrTiO3 oxides. Spin polarization emerges below the ferromagnetic transition temperature of the EuTiO3 layer (TFM = 6-8 K) and is due to the exchange interaction between the magnetic moments of Eu-4f and of Ti-3d electrons. Moreover, in a large region of the phase diagram, superconductivity sets in from a ferromagnetic normal state. The occurrence of magnetic interactions, superconductivity and spin-orbit coupling in the same q2DES makes the LaAlO3/EuTiO3/SrTiO3 system an intriguing platform for the emergence of novel quantum phases in low-dimensional materials.


Asunto(s)
Metales/química , Óxidos/química , Anisotropía , Campos Magnéticos , Ensayo de Materiales
4.
Phys Rev Lett ; 115(23): 237202, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26684139

RESUMEN

We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3 meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

5.
Phys Rev Lett ; 113(23): 237201, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25526151

RESUMEN

We investigated the magnetic properties of individual Ho atoms adsorbed on the (111) surface of Pt, which have been recently claimed to display single ion magnetic behavior. By combining x-ray absorption spectroscopy and magnetic dichroism measurements with ligand field multiplet calculations, we reveal a ground state which is incompatible with long spin relaxation times, in disagreement with former findings. A comparative study of the ground state and magnetic anisotropy of Ho and Er on Pt(111) and Cu(111) emphasizes the different interaction of the 4f orbitals with localized and delocalized substrate states. In particular, we find a striking rotation of the magnetization easy axis for Er, which changes from out of plane on Pt(111) to in plane on Cu(111).

6.
Phys Rev Lett ; 113(17): 177201, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25379935

RESUMEN

We determine the magnetic properties of individual Co atoms adsorbed on graphene (G) with x-ray absorption spectroscopy and magnetic circular dichroism. The magnetic ground state of Co adatoms strongly depends on the choice of the metal substrate on which graphene is grown. Cobalt atoms on G/Ru(0001) feature exceptionally large orbital and spin moments, as well as an out-of-plane easy axis with large magnetic anisotropy. Conversely, the magnetic moments are strongly reduced for Co/G/Ir(111), and the magnetization is of the easy-plane type. We demonstrate how the Co magnetic properties, which ultimately depend on the degree of hybridization between the Co 3d orbitals and graphene π bands, can be tailored through the strength of the graphene-substrate coupling.

7.
Phys Rev Lett ; 110(8): 087207, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473198

RESUMEN

In sharp contrast to previous studies on FeRh bulk, thin films, and nanoparticles, we report the persistence of ferromagnetic order down to 3 K for size-selected 3.3 nm diameter nanocrystals embedded into an amorphous carbon matrix. The annealed nanoparticles have a B2 structure with alternating atomic Fe and Rh layers. X-ray magnetic dichroism and superconducting quantum interference device measurements demonstrate ferromagnetic alignment of the Fe and Rh magnetic moments of 3 and 1µ(B), respectively. The ferromagnetic order is ascribed to the finite-size induced structural relaxation observed in extended x-ray absorption spectroscopy.

8.
Phys Rev Lett ; 111(8): 087204, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010471

RESUMEN

Possible ferromagnetism induced in otherwise nonmagnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetism can be stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated with magnetic Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetism is quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in this phenomenon.

9.
Phys Rev Lett ; 105(24): 246803, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21231546

RESUMEN

We present a new method to engineer the charge carrier mobility and its directional asymmetry in epitaxial graphene by using metal cluster superlattices self-assembled onto the moiré pattern formed by graphene on Ir(111). Angle-resolved photoemission spectroscopy reveals threefold symmetry in the band structure associated with strong renormalization of the electron group velocity close to the Dirac point giving rise to highly anisotropic Dirac cones. We further find that the cluster superlattice also affects the spectral-weight distribution of the carbon bands as well as the electronic gaps between graphene states.

10.
Sci Rep ; 9(1): 149, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651570

RESUMEN

The origin of (ferro)magnetic ordering in transition metal doped ZnO is a still open question. For applications it is fundamental to establish if it arises from magnetically ordered impurity clusters embedded into the semiconducting matrix or if it originates from ordering of magnetic ions dilute into the host lattice. In this latter case, a reciprocal effect of the magnetic exchange on the charge carriers is expected, offering many possibilities for spintronics applications. In this paper we report on the relationship between magnetic properties and free charge density investigated by using Zinc oxide based field effect transistors, in which the charge carrier density is modulated by more than 4 order of magnitude, from 1016 to 1020 e-/cm3. The magnetotransport properties are employed to probe the magnetic status of the channel both in pure and cobalt doped zinc oxide transistors. We find that it is widely possible to control the magnetic scattering rates by field effect. We believe that this finding is a consequence of the modulation of magnetization and carrier spin polarization by the electric field. The observed effects can be explained by the change in size of bound magnetic polarons that induces a percolation magnetic ordering in the sample.

11.
Science ; 352(6283): 318-21, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27081065

RESUMEN

A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier.

12.
J Phys Condens Matter ; 24(31): 314203, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22820450

RESUMEN

We compare different growth methods with the aim of optimizing the long-range order of a graphene layer grown on Ru(0001). Combining chemical vapor deposition with carbon loading and segregation of the surface layer leads to autocorrelation lengths of 240 Å. We present several routes to band gap and charge carrier mobility engineering for the example of graphene on Ir(111). Ir cluster superlattices self-assembled onto the graphene moiré pattern produce a strong renormalization of the electron group velocity close to the Dirac point, leading to highly anisotropic Dirac cones and the enlargement of the gap from 140 to 340 meV. This gap can further be enhanced to 740 meV by Na co-adsorption onto the Ir cluster superlattice at room temperature. This value is close to that of Ge, and the high group velocity of the charge carriers is fully preserved. We also present data for Na adsorbed without the Ir clusters. In both cases we find that the Na is on top of the graphene layer.

13.
J Phys Condens Matter ; 24(33): 335502, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22813539

RESUMEN

We examined by low-energy electron diffraction and scanning tunneling microscopy the surface of thin Cu films on Pt(111). The Cu/Pt lattice mismatch induces a moiré modulation for films from 3 to about 10 ML thickness. We used angle-resolved photoemission spectroscopy to examine the effects of this structural modulation on the electronic states of the system. A series of hexagonal- and trigonal-like constant energy contours is found in the proximity of the Cu(111) zone boundaries. These electronic patterns are generated by Cu sp-quantum well state replicas, originating from multiple points of the reciprocal lattice associated with the moiré superstructure. Layer-dependent strain relaxation and hybridization with the substrate bands concur to determine the dispersion and energy position of the Cu Shockley surface state.

14.
Nat Commun ; 3: 1313, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23271648

RESUMEN

The central goals of nanoscale magnetic materials science are the self-assembly of the smallest structure exhibiting ferromagnetic hysteresis at room temperature, and the assembly of these structures into the highest density patterns. The focus has been on chemically ordered alloys combining magnetic 3d elements with polarizable 5d elements having high spin-orbit coupling and thus yielding the desired large magneto-crystalline anisotropy. The chemical synthesis of nanoparticles of these alloys yields disordered phases requiring annealing to transform them to the high-anisotropy L1(0) structure. Despite considerable efforts, so far only part of the nanoparticles can be transformed without coalescence. Here we present an alternative approach to homogeneous alloys, namely the creation of nanostructures with atomically sharp bimetallic interfaces and interlines. They exhibit unexpectedly high magnetization reversal energy with values and directions of the easy magnetization axes strongly depending on chemistry and texture. We find significant deviations from the expected behaviour for commonly used element combinations. Ab-initio calculations reproduce these results and unravel their origin.

15.
Rev Sci Instrum ; 80(2): 023902, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19256657

RESUMEN

A surface magneto-optic Kerr effect (MOKE) setup fully integrated in an ultrahigh vacuum chamber is presented. The system has been designed to combine in situ MOKE and scanning tunneling microscopy. Magnetic fields up to 0.3 T can be applied at any angle in the transverse plane allowing the study of in-plane and out-of-plane magnetization. The setup performance is demonstrated for a continuous film of 0.9 monolayers (ML) Co/Rh(111) with in-plane easy axis and for a superlattice of nanometric double layer Co islands on Au(11,12,12) with out-of-plane easy axis. For Co/Au(11,12,12) we demonstrate that the magnetic anisotropy energies deduced from thermally induced magnetization reversal and from applying a torque onto the magnetization by turning the field are the same. For the presented setup we establish a coverage detection limit of 0.5 ML for transverse and 0.1 ML for polar MOKE. For island superlattices with the density of Co/Au(11,12,12), the latter limit corresponds to islands composed of about 50 atoms. The detection limit can be further reduced when optimizing the MOKE setup for either one of the two Kerr configurations.

16.
Rev Sci Instrum ; 80(12): 123902, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20059149

RESUMEN

We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni(73)Fe(18)Gd(7)Co(2)) at the L(3)/L(2)-edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/square root(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

17.
Phys Rev Lett ; 95(15): 157204, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16241757

RESUMEN

We report on the magnetic properties of two-dimensional Co nanoparticles arranged in macroscopically phase-coherent superlattices created by self-assembly on Au(788). Our particles have a density of 26 Tera/in2 (1 Tera=10(12)), are monodomain, and have uniaxial out-of-plane anisotropy. The distribution of the magnetic anisotropy energies has a half width at half maximum of 17%, a factor of 2 more narrow than the best results reported for superlattices of three-dimensional nanoparticles. Our data show the absence of magnetic interactions between the particles. Co/Au(788) thus constitutes an ideal model system to explore the ultimate density limit of magnetic recording.

18.
Nat Mater ; 2(8): 546-51, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12883549

RESUMEN

The original magnetic properties of nanometre-sized particles are due to the distinct contributions of volume, surface and step atoms. To disentangle these contributions is an ongoing challenge of materials science. Here we introduce a method enabling the identification of the remarkably different contributions of surface and perimeter atoms to the magnetic anisotropy energy of two-dimensional nanostructures. Our method uses the generally nonlinear relationship between perimeter length and surface area. Atomic-scale characterization of the morphology of ensembles of polydisperse nanostructures, combined with in situ measurements of their temperature-dependent magnetic susceptibility, gives access to the role played by the differently coordinated atoms. We show for Co nanostructures on a Pt(111) surface that their uniaxial out-of-plane magnetization is entirely caused by edge atoms having 20 times more anisotropy energy than their bulk and surface counterparts. Identification of the role of perimeter and surface atoms opens up unprecedented opportunities for materials engineering. As an example, we separately tune magnetic hardness and moment in bimetallic core-shell nanostructures.


Asunto(s)
Cobalto/química , Magnetismo , Ensayo de Materiales/métodos , Nanotecnología/métodos , Platino (Metal)/química , Anisotropía , Cristalografía/métodos , Microscopía Electrónica de Rastreo/métodos , Modelos Moleculares , Conformación Molecular , Nanotecnología/instrumentación , Propiedades de Superficie
19.
Phys Rev Lett ; 93(7): 077203, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15324270

RESUMEN

One-dimensional Co atomic wires grown on Pt(997) have been investigated by x-ray magnetic circular dichroism. Strong changes of the magnetic properties are observed as the system evolves from 1D- to 2D-like. The easy axis of magnetization, the magnetic anisotropy energy, and the coercive field oscillate as a function of the transverse width of the wires, in agreement with theoretical predictions for 1D metal systems.

20.
Science ; 300(5622): 1130-3, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12750516

RESUMEN

The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface. Single cobalt atoms deposited onto platinum (111) are found to have a magnetic anisotropy energy of 9 millielectron volts per atom arising from the combination of unquenched orbital moments (1.1 Bohr magnetons) and strong spin-orbit coupling induced by the platinum substrate. By assembling cobalt nanoparticles containing up to 40 atoms, the magnetic anisotropy energy is further shown to be dependent on single-atom coordination changes. These results confirm theoretical predictions and are of fundamental value to understanding how magnetic anisotropy develops in finite-sized magnetic particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA