Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Genomics ; 23(1): 333, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35488202

RESUMEN

BACKGROUND: Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS: By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS: These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.


Asunto(s)
Áfidos , Brassica napus , Luteoviridae , Virus de Plantas , Animales , Áfidos/fisiología , Virus ADN , Expresión Génica , Luteoviridae/fisiología , Enfermedades de las Plantas , Virus de Plantas/fisiología
2.
Plant Physiol ; 185(2): 331-351, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721895

RESUMEN

Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation of the molecules in the pathway. While plant carotenoid biosynthesis has been extensively characterized, research on carotenoid degradation and catabolism into apocarotenoids is a relatively novel field. To identify apocarotenoid metabolic processes, we characterized the transcriptome of transgenic Arabidopsis (Arabidopsis thaliana) roots accumulating high levels of ß-carotene and, consequently, ß-apocarotenoids. Transcriptome analysis revealed feedback regulation on carotenogenic gene transcripts suitable for reducing ß-carotene levels, suggesting involvement of specific apocarotenoid signaling molecules originating directly from ß-carotene degradation or after secondary enzymatic derivatizations. Enzymes implicated in apocarotenoid modification reactions overlapped with detoxification enzymes of xenobiotics and reactive carbonyl species (RCS), while metabolite analysis excluded lipid stress response, a potential secondary effect of carotenoid accumulation. In agreement with structural similarities between RCS and ß-apocarotenoids, RCS detoxification enzymes also converted apocarotenoids derived from ß-carotene and from xanthophylls into apocarotenols and apocarotenoic acids in vitro. Moreover, glycosylation and glutathionylation-related processes and translocators were induced. In view of similarities to mechanisms found in crocin biosynthesis and cellular deposition in saffron (Crocus sativus), our data suggest apocarotenoid metabolization, derivatization and compartmentalization as key processes in (apo)carotenoid metabolism in plants.


Asunto(s)
Arabidopsis/metabolismo , Carotenoides/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Xenobióticos/metabolismo , Arabidopsis/genética , Radicales Libres/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Xantófilas/metabolismo
3.
Molecules ; 27(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35630529

RESUMEN

The grapevine fanleaf virus (GFLV), responsible for fanleaf degeneration, is spread in vineyards by the soil nematode Xiphinema index. Nematicide molecules were used to limit the spread of the disease until they were banned due to negative environmental impacts. Therefore, there is a growing interest in alternative methods, including plant-derived products with antagonistic effects to X. index. In this work, we evaluated the nematicidal potential of the aerial parts and roots of four Fabaceae: sainfoin (Onobrychis viciifolia), birdsfoot trefoil (Lotus corniculatus), sweet clover (Melilotus albus), and red clover (Trifolium pratense), as well as that of sainfoin-based commercial pellets. For all tested plants, either aerial or root parts, or both of them, exhibited a nematicidal effect on X. index in vitro, pellets being as effective as freshly harvested plants. Comparative metabolomic analyses did not reveal molecules or molecule families specifically associated with antagonistic properties toward X. index, suggesting that the nematicidal effect is the result of a combination of different molecules rather than associated with a single compound. Finally, scanning electron microscope observations did not reveal the visible impact of O. viciifolia extract on X. index cuticle, suggesting that alteration of the cuticle may not be the primary cause of their nematicidal effect.


Asunto(s)
Lotus , Nematodos , Animales , Antinematodos/farmacología , Humanos , Enfermedades de las Plantas , Suelo
4.
BMC Plant Biol ; 21(1): 487, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696712

RESUMEN

BACKGROUND: Alternative splicing (AS) produces transcript variants playing potential roles in proteome diversification and gene expression regulation. AS modulation is thus essential to respond to developmental and environmental stimuli. In grapevine, a better understanding of berry development is crucial for implementing breeding and viticultural strategies allowing adaptation to climate changes. Although profound changes in gene transcription have been shown to occur in the course of berry ripening, no detailed study on splicing modifications during this period has been published so far. We report here on the regulation of gene AS in developing berries of two grapevine (Vitis vinifera L.) varieties, Gewurztraminer (Gw) and Riesling (Ri), showing distinctive phenotypic characteristics. Using the software rMATS, the transcriptomes of berries at four developmental steps, from the green stage to mid-ripening, were analysed in pairwise comparisons between stages and varieties. RESULTS: A total of 305 differential AS (DAS) events, affecting 258 genes, were identified. Interestingly, 22% of these AS events had not been reported before. Among the 80 genes that underwent the most significant variations during ripening, 22 showed a similar splicing profile in Gw and Ri, which suggests their involvement in berry development. Conversely, 23 genes were subjected to splicing regulation in only one variety. In addition, the ratios of alternative isoforms were different in Gw and Ri for 35 other genes, without any change during ripening. This last result indicates substantial AS differences between the two varieties. Remarkably, 8 AS events were specific to one variety, due to the lack of a splice site in the other variety. Furthermore, the transcription rates of the genes affected by stage-dependent splicing regulation were mostly unchanged, identifying AS modulation as an independent way of shaping the transcriptome. CONCLUSIONS: The analysis of AS profiles in grapevine varieties with contrasting phenotypes revealed some similarity in the regulation of several genes with developmental functions, suggesting their involvement in berry ripening. Additionally, many splicing differences were discovered between the two varieties, that could be linked to phenotypic specificities and distinct adaptive capacities. Together, these findings open perspectives for a better understanding of berry development and for the selection of grapevine genotypes adapted to climate change.


Asunto(s)
Empalme Alternativo , Frutas/crecimiento & desarrollo , Frutas/genética , Genotipo , Fenotipo , Vitis/crecimiento & desarrollo , Vitis/genética , Cambio Climático , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Fitomejoramiento/métodos
5.
Theor Appl Genet ; 133(3): 993-1008, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31932953

RESUMEN

KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.


Asunto(s)
Ácidos/metabolismo , Frutas/genética , Genes de Plantas , Potasio/metabolismo , Vitis/genética , Alelos , Mapeo Cromosómico , Cambio Climático , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Calor , Concentración de Iones de Hidrógeno , Malatos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Sitios de Carácter Cuantitativo
6.
Theor Appl Genet ; 132(4): 1073-1087, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30535509

RESUMEN

KEY MESSAGE: In grapevine interspecific hybrids, meiotic recombination is suppressed in homeologous regions and enhanced in homologous regions of recombined chromosomes, whereas crossover rate remains unchanged when chromosome pairs are entirely homeologous. Vitis rotundifolia, an American species related to the cultivated European grapevine Vitis vinifera, has a high level of resistance to several grapevine major diseases and is consequently a valuable resource for grape breeding. However, crosses between both species most often lead to very few poorly fertile hybrids. In this context, identifying genetic and genomic features that make cross-breeding between both species difficult is essential. To this end, three mapping populations were generated by pseudo-backcrosses using V. rotundifolia as the donor parent and several V. vinifera cultivars as the recurrent parents. Genotyping-by-sequencing was used to establish high-density genetic linkage maps and to determine the genetic composition of the chromosomes of each individual. A good collinearity of the SNP positions was observed between parental maps, confirming the synteny between both species, except on lower arm of chromosome 7. Interestingly, recombination rate in V. rotundifolia × V. vinifera interspecific hybrids depends on the length of the introgressed region. It is similar to grapevine for chromosome pairs entirely homeologous. Conversely, for chromosome pairs partly homeologous, recombination is suppressed in the homeologous regions, whereas it is enhanced in the homologous ones. This balance leads to the conservation of the total genetic length of each chromosome between V. vinifera and hybrid maps, whatever the backcross level and the proportion of homeologous region. Altogether, these results provide new insight to optimize the use of V. rotundifolia in grape breeding and, more generally, to improve the introgression of gene of interest from wild species related to crops.


Asunto(s)
Hibridación Genética , Recombinación Genética/genética , Vitis/genética , Alelos , Pintura Cromosómica , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Genoma de Planta , Técnicas de Genotipaje , Repeticiones de Minisatélite/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Plant Cell ; 22(6): 1686-701, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20581307

RESUMEN

To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Genoma de Planta , Triticum/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Mapeo Contig , ADN de Plantas/genética , Duplicación de Gen , Genes de Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia de ADN , Telómero/genética
8.
G3 (Bethesda) ; 13(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36966465

RESUMEN

The genome sequence of the diploid and highly homozygous Vitis vinifera genotype PN40024 serves as the reference for many grapevine studies. Despite several improvements to the PN40024 genome assembly, its current version PN12X.v2 is quite fragmented and only represents the haploid state of the genome with mixed haplotypes. In fact, being nearly homozygous, this genome contains several heterozygous regions that are yet to be resolved. Taking the opportunity of improvements that long-read sequencing technologies offer to fully discriminate haplotype sequences, an improved version of the reference, called PN40024.v4, was generated. Through incorporating long genomic sequencing reads to the assembly, the continuity of the 12X.v2 scaffolds was highly increased with a total number decreasing from 2,059 to 640 and a reduction in N bases of 88%. Additionally, the full alternative haplotype sequence was built for the first time, the chromosome anchoring was improved and the number of unplaced scaffolds was reduced by half. To obtain a high-quality gene annotation that outperforms previous versions, a liftover approach was complemented with an optimized annotation workflow for Vitis. Integration of the gene reference catalogue and its manual curation have also assisted in improving the annotation, while defining the most reliable estimation of 35,230 genes to date. Finally, we demonstrated that PN40024 resulted from 9 selfings of cv. "Helfensteiner" (cross of cv. "Pinot noir" and "Schiava grossa") instead of a single "Pinot noir". These advances will help maintain the PN40024 genome as a gold-standard reference, also contributing toward the eventual elaboration of the grapevine pangenome.


Asunto(s)
Genoma de Planta , Vitis , Genotipo , Mapeo Cromosómico , Secuencia de Bases , Anotación de Secuencia Molecular , Vitis/genética
9.
Hortic Res ; 10(5): uhad061, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37213686

RESUMEN

Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres, limiting the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the study of inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads. The T2T reference genome (PN_T2T) is 69 Mb longer with 9018 more genes identified than the 12X.v0 version. We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T assembly. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though PN40024 derives from nine generations of selfing, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs.

10.
BMC Plant Biol ; 12: 35, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22416807

RESUMEN

BACKGROUND: Wheat grains are an important source of food, stock feed and raw materials for industry, but current production levels cannot meet world needs. Elucidation of the molecular mechanisms underlying wheat grain development will contribute valuable information to improving wheat cultivation. One of the most important mechanisms implicated in plant developmental processes is the ubiquitin-proteasome system (UPS). Among the different roles of the UPS, it is clear that it is essential to hormone signaling. In particular, E3 ubiquitin ligases of the UPS have been shown to play critical roles in hormone perception and signal transduction. RESULTS: A NimbleGen microarray containing 39,179 UniGenes was used to study the kinetics of gene expression during wheat grain development from the early stages of cell division to the mid-grain filling stage. By comparing 11 consecutive time-points, 9284 differentially expressed genes were identified and annotated during this study. A comparison of the temporal profiles of these genes revealed dynamic transcript accumulation profiles with major reprogramming events that occurred during the time intervals of 80-120 and 220-240°Cdays. The list of the genes expressed differentially during these transitions were identified and annotated. Emphasis was placed on E3 ligase and hormone-related genes. In total, 173 E3 ligase coding genes and 126 hormone-related genes were differentially expressed during the cell division and grain filling stages, with each family displaying a different expression profile. CONCLUSIONS: The differential expression of genes involved in the UPS and plant hormone pathways suggests that phytohormones and UPS crosstalk might play a critical role in the wheat grain developmental process. Some E3 ligase and hormone-related genes seem to be up- or down-regulated during the early and late stages of the grain development.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Triticum/enzimología , Triticum/genética , Ubiquitina-Proteína Ligasas/genética , Tormentas Ciclónicas , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/metabolismo , Triticum/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Plant Physiol ; 157(4): 1596-608, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22034626

RESUMEN

To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , ADN Intergénico/genética , Genoma de Planta/genética , Islas Genómicas/fisiología , Mapeo Físico de Cromosoma/métodos , Triticum/genética , Secuencia de Bases , Brachypodium/genética , Centrómero/genética , Cromosomas de las Plantas/genética , ADN de Plantas/química , ADN de Plantas/genética , Evolución Molecular , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Islas Genómicas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Poliploidía , Análisis de Secuencia de ADN , Telómero/genética , Transcriptoma
12.
Microbiol Spectr ; 10(4): e0013622, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856906

RESUMEN

Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.


Asunto(s)
Áfidos , Arabidopsis , Virus , Animales , Áfidos/genética , Arabidopsis/genética , Conducta Alimentaria/fisiología , Perfilación de la Expresión Génica , Enfermedades de las Plantas , Virus/genética
13.
Viruses ; 13(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834945

RESUMEN

Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus-host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.


Asunto(s)
Frutas/virología , Nepovirus , Enfermedades de las Plantas/virología , Genotipo , Trastornos del Crecimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Nepovirus/genética , Filogenia , Secoviridae , Nicotiana/virología , Transcriptoma , Vitis/virología
14.
Front Plant Sci ; 12: 803977, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111182

RESUMEN

Effective crop improvement, whether through selective breeding or biotech strategies, is largely dependent on the cumulative knowledge of a species' pangenome and its containing genes. Acquiring this knowledge is specially challenging in grapevine, one of the oldest fruit crops grown worldwide, which is known to have more than 30,000 genes. Well-established research communities studying model organisms have created and maintained, through public and private funds, a diverse range of online tools and databases serving as repositories of genomes and gene function data. The lack of such resources for the non-model, but economically important, Vitis vinifera species has driven the need for a standardised collection of genes within the grapevine community. In an effort led by the Integrape COST Action CA17111, we have recently developed the first grape gene reference catalogue, where genes are ascribed to functional data, including their accession identifiers from different genome-annotation versions (https://integrape.eu/resources/genes-genomes/). We present and discuss this gene repository together with a validation-level scheme based on varied supporting evidence found in current literature. The catalogue structure and online submission form provided permits community curation. Finally, we present the Gene Cards tool, developed within the Vitis Visualization (VitViz) platform, to visualize the data collected in the catalogue and link gene function with tissue-specific expression derived from public transcriptomic data. This perspective article aims to present these resources to the community as well as highlight their potential use, in particular for plant-breeding applications.

15.
BMC Genomics ; 11: 714, 2010 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-21167071

RESUMEN

BACKGROUND: Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B). However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. RESULTS: Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. CONCLUSION: Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.


Asunto(s)
Bases de Datos Genéticas , Genes de Plantas/genética , Genómica/métodos , Hordeum/genética , Triticum/genética , Eliminación de Gen , Oryza/genética , Mapeo Físico de Cromosoma
16.
Genes (Basel) ; 11(3)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245073

RESUMEN

Although there are a number of bioinformatic tools to identify plant nucleotide-binding leucine-rich repeat (NLR) disease resistance genes based on conserved protein sequences, only a few of these tools have attempted to identify disease resistance genes that have not been annotated in the genome. The overall goal of the NLGenomeSweeper pipeline is to annotate NLR disease resistance genes, including RPW8, in the genome assembly with high specificity and a focus on complete functional genes. This is based on the identification of the complete NB-ARC domain, the most conserved domain of NLR genes, using the BLAST suite. In this way, the tool has a high specificity for complete genes and relatively intact pseudogenes. The tool returns all candidate NLR gene locations as well as InterProScan ORF and domain annotations for manual curation of the gene structure.


Asunto(s)
Genómica/métodos , Proteínas NLR/genética , Proteínas de Plantas/genética , Análisis de Secuencia de Proteína/métodos , Programas Informáticos/normas , Arabidopsis , Secuencia Conservada , Resistencia a la Enfermedad , Genómica/normas , Helianthus , Proteínas NLR/química , Proteínas de Plantas/química , Unión Proteica , Dominios Proteicos , Análisis de Secuencia de Proteína/normas
17.
Genome Biol ; 21(1): 223, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892750

RESUMEN

BACKGROUND: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. RESULTS: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. CONCLUSIONS: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.


Asunto(s)
Domesticación , Genoma de Planta , Procesos de Determinación del Sexo , Vitis/genética , Haplotipos , Infertilidad Vegetal/genética , Secuenciación Completa del Genoma
18.
Front Plant Sci ; 9: 360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619037

RESUMEN

The Oomycete Plasmopara viticola is responsible for downy mildew, which is one of the most damaging grapevine diseases. Due to the strictly biotrophic way of life of P. viticola, its metabolome is relatively poorly characterized. In this work, we have used a mass spectrometry-based non-targeted metabolomic approach to identify potential Plasmopara-specific metabolites. This has led to the characterization and structural elucidation of compounds belonging to three families of atypical lipids, which are not detected in healthy grapevine tissues. These lipids include ceramides and derivatives of arachidonic and eicosapentaenoic acid, most of which had not been previously described in Oomycetes. Furthermore, we show that these lipids can be detected in Plasmopara-infected tissues at very early stages of the infection process, long before the appearance the first visible symptoms of the disease. Therefore, the potential use of these specific lipids as markers to monitor the development of P. viticola is discussed.

19.
PLoS One ; 13(6): e0199902, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29953551

RESUMEN

Cytochromes P450 are enzymes that participate in a wide range of functions in plants, from hormonal signaling and biosynthesis of structural polymers, to defense or communication with other organisms. They represent one of the largest gene/protein families in the plant kingdom. The manual annotation of cytochrome P450 genes in the genome of Vitis vinifera PN40024 revealed 579 P450 sequences, including 279 complete genes. Most of the P450 sequences in grapevine genome are organized in physical clusters, resulting from tandem or segmental duplications. Although most of these clusters are small (2 to 35, median = 3), some P450 families, such as CYP76 and CYP82, underwent multiple duplications and form large clusters of homologous sequences. Analysis of gene expression revealed highly specific expression patterns, which are often the same within the genes in large physical clusters. Some of these genes are induced upon biotic stress, which points to their role in plant defense, whereas others are specifically activated during grape berry ripening and might be responsible for the production of berry-specific metabolites, such as aroma compounds. Our work provides an exhaustive and robust annotation including clear identification, structural organization, evolutionary dynamics and expression patterns for the grapevine cytochrome P450 families, paving the way to efficient functional characterization of genes involved in grapevine defense pathways and aroma biosynthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta , Anotación de Secuencia Molecular , Proteínas de Plantas , Vitis , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Vitis/enzimología , Vitis/genética
20.
Mol Plant Pathol ; 18(5): 708-719, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27216084

RESUMEN

Inducible plant defences against pathogens are stimulated by infections and comprise several classes of pathogenesis-related (PR) proteins. Endo-ß-1,3-glucanases (EGases) belong to the PR-2 class and their expression is induced by many pathogenic fungi and oomycetes, suggesting that EGases play a role in the hydrolysis of pathogen cell walls. However, reports of a direct effect of EGases on cell walls of plant pathogens are scarce. Here, we characterized three EGases from Vitis vinifera whose expression is induced during infection by Plasmopara viticola, the causal agent of downy mildew. Recombinant proteins were expressed in Escherichia coli. The enzymatic characteristics of these three enzymes were measured in vitro and in planta. A functional assay performed in vitro on germinated P. viticola spores revealed a strong anti-P. viticola activity for EGase3, which strikingly was that with the lowest in vitro catalytic efficiency. To our knowledge, this work shows, for the first time, the direct effect against downy mildew of EGases of the PR-2 family from Vitis.


Asunto(s)
Antiinfecciosos/farmacología , Oomicetos/patogenicidad , Proteínas de Plantas/farmacología , Vitis/enzimología , Antiinfecciosos/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas , Oomicetos/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA