Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(5): e2007222, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33448118

RESUMEN

Magneto-optical (MO) coupling incorporates photon-induced change of magnetic polarization that can be adopted in ultrafast switching, optical isolators, mode convertors, and optical data storage components for advanced optical integrated circuits. However, integrating plasmonic, magnetic, and dielectric properties in one single material system poses challenges since one natural material can hardly possess all these functionalities. Here, co-deposition of a three-phase heterostructure composed of a durable conductive nitride matrix with embedded core-shell vertically aligned nanopillars, is demonstrated. The unique coupling between ferromagnetic NiO core and atomically sharp plasmonic Au shell enables strong MO activity out-of-plane at room temperature. Further, a template growth process is applied, which significantly enhances the ordering of the nanopillar array. The ordered nanostructure offers two schemes of spin polarization which result in stronger antisymmetry of Kerr rotation. The presented complex hybrid metamaterial platform with strong magnetic and optical anisotropies is promising for tunable and modulated all-optical-based nanodevices.

2.
Nano Lett ; 20(9): 6614-6622, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787175

RESUMEN

Metal-free plasmonic metamaterials with wide-range tunable optical properties are highly desired for various components in future integrated optical devices. Designing a ceramic-ceramic hybrid metamaterial has been theoretically proposed as a solution to this critical optical material demand. However, the processing of such all-ceramic metamaterials is challenging due to difficulties in integrating two very dissimilar ceramic phases as one hybrid system. In this work, an oxide-nitride hybrid metamaterial combining two highly dissimilar ceramic phases, i.e., semiconducting weak ferromagnetic NiO nanorods and conductive plasmonic TiN matrix, has been successfully integrated as a unique vertically aligned nanocomposite form. Highly anisotropic optical properties such as hyperbolic dispersions and strong magneto-optical coupling have been demonstrated under room temperature. The novel functionalities presented show the strong potentials of this new ceramic-ceramic hybrid thin film platform and its future applications in next-generation nanophotonics and magneto-optical integrated devices without the lossy metallic components.

3.
Nanomaterials (Basel) ; 12(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36234589

RESUMEN

Nanocomposite thin film materials present great opportunities in coupling materials and functionalities in unique nanostructures including nanoparticles-in-matrix, vertically aligned nanocomposites (VANs), and nanolayers. Interestingly the nanocomposites processed through a non-equilibrium processing method, e.g., pulsed laser deposition (PLD), often possess unique metastable phases and microstructures that could not achieve using equilibrium techniques, and thus lead to novel physical properties. In this work, a unique three-phase system composed of BaTiO3 (BTO), with two immiscible metals, Au and Fe, is demonstrated. By adjusting the deposition laser frequency from 2 Hz to 10 Hz, the phase and morphology of Au and Fe nanoparticles in BTO matrix vary from separated Au and Fe nanoparticles to well-mixed Au-Fe alloy pillars. This is attributed to the non-equilibrium process of PLD and the limited diffusion under high laser frequency (e.g., 10 Hz). The magnetic and optical properties are effectively tuned based on the morphology variation. This work demonstrates the stabilization of non-equilibrium alloy structures in the VAN form and allows for the exploration of new non-equilibrium materials systems and their properties that could not be easily achieved through traditional equilibrium methods.

4.
Adv Sci (Weinh) ; 9(29): e2202671, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36026570

RESUMEN

Mixtures of Ce-doped rare-earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A-site cations with an equiatomic ratio allows for the stabilization of a single-crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare-earth aluminum perovskite oxide (La0.2 Lu0.2 Y0.2 Gd0.2 Ce0.2 )AlO3 and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd3+ and energy transfer to Ce3+ with 405 nm emission are observed, which represents the potential for high-energy conversion. These experimental results also offer the pathway to tunable optical properties of high-entropy rare-earth epitaxial perovskite films for a range of applications.

5.
Nanoscale ; 13(39): 16672-16679, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34590640

RESUMEN

Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide materials are a group of prospective candidates due to their superior room-temperature multiferroic response. Here, an ultrathin Bi3Fe2Mn2O10+δ layered supercell (BFMO322 LS) structure was deposited on an LaAlO3 (LAO) (001) substrate using pulsed laser deposition. Microstructural analysis suggests that a layered supercell (LS) structure consisting of two-layer-thick Bi-O slabs and two-layer-thick Mn/Fe-O octahedra slabs was formed on top of the pseudo-perovskite interlayer (IL). A robust saturation magnetization value of 129 and 96 emu cm-3 is achieved in a 12.3 nm thick film in the in-plane (IP) and out-of-plane (OP) directions, respectively. The ferromagnetism, dielectric permittivity, and optical bandgap of the ultrathin BFMO films can be effectively tuned by thickness and morphology variation. In addition, the anisotropy of all ultrathin BFMO films switches from OP dominating to IP dominating as the thickness increases. This study demonstrates the ultrathin BFMO film with tunable multifunctionalities as a promising candidate for novel integrated spintronic devices.

6.
ACS Omega ; 5(37): 23793-23798, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32984699

RESUMEN

Oxide-oxide-based vertically aligned nanocomposites (VANs) have demonstrated a new material platform for enhanced and/or combined functionalities because of their unique vertical geometry and strain coupling. Various factors contribute to the growth of VANs, including deposition parameters, phase composition, phase ratios, crystallography, etc. In this work, substrate strain effects are explored through growing a two-phase oxide-oxide La0.7Sr0.3MnO3 (LSMO):NiO system, combining antiferromagnetic NiO and ferromagnetic LSMO, on various substrates with different lattice parameters. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and magnetic property measurements all suggest that substrate strain plays a critical role in the epitaxial growth of a VAN structure and their two-phase separation, and thus results in different physical properties. This work sheds light on the fundamental nucleation and growth mechanisms of the two-phase VAN systems and the effects of substrate strain on the overall orientation and growth quality of the VAN films.

7.
ACS Appl Mater Interfaces ; 12(46): 51827-51836, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33164483

RESUMEN

Materials with magneto-optic coupling properties are highly coveted for their potential applications ranging from spintronics and optical switches to sensors. In this work, a new, three-phase Au-Fe-La0.5Sr0.5FeO3 (LSFO) hybrid material grown in a vertically aligned nanocomposite (VAN) form has been demonstrated. This three-phase hybrid material combines the strong ferromagnetic properties of Fe and the strong plasmonic properties of Au and the dielectric nature of the LSFO matrix. More interestingly, the immiscible Au and Fe phases form Au-encapsulated Fe nanopillars, embedded in the LSFO matrix. Multifunctionalities including anisotropic optical dielectric properties, plasmonic properties, magnetic anisotropy, and room-temperature magneto-optic Kerr effect coupling are demonstrated. The single-step growth method to grow the immiscible two-metal nanostructures (i.e., Au and Fe) in the complex hybrid material form opens exciting new potential opportunities for future three-phase VAN systems with more versatile metal selections.

8.
Nanoscale Adv ; 1(11): 4450-4458, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134413

RESUMEN

Ferromagnetic nanostructures with strong anisotropic properties are highly desired for their potential integration into spintronic devices. Several anisotropic candidates, such as CoFeB and Fe-Pt, have been previously proposed, but many of them have limitations such as patterning issues or thickness restrictions. In this work, Co-BaZrO3 (Co-BZO) vertically aligned nanocomposite (VAN) films with tunable magnetic anisotropy and coercive field strength have been demonstrated to address this need. Such tunable magnetic properties are achieved through tuning the thickness of the Co-BZO VAN structures and the aspect ratio of the Co nanostructures, which can be easily integrated into spintronic devices. As a demonstration, we have integrated the Co-BZO VAN nanostructure into tunnel junction devices, which demonstrated resistive switching alluding to Co-BZO's immense potential for future spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA