Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(3): 695-708.e13, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30293865

RESUMEN

We have uncovered the existence of extracellular vesicle (EV)-mediated signaling between cell types within the adipose tissue (AT) proper. This phenomenon became evident in our attempts at generating an adipocyte-specific knockout of caveolin 1 (cav1) protein. Although we effectively ablated the CAV1 gene in adipocytes, cav1 protein remained abundant. With the use of newly generated mouse models, we show that neighboring endothelial cells (ECs) transfer cav1-containing EVs to adipocytes in vivo, which reciprocate by releasing EVs to ECs. AT-derived EVs contain proteins and lipids capable of modulating cellular signaling pathways. Furthermore, this mechanism facilitates transfer of plasma constituents from ECs to the adipocyte. The transfer event is physiologically regulated by fasting/refeeding and obesity, suggesting EVs participate in the tissue response to changes in the systemic nutrient state. This work offers new insights into the complex signaling mechanisms that exist among adipocytes, stromal vascular cells, and, potentially, distal organs.


Asunto(s)
Adipocitos/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Ayuno/metabolismo , Transducción de Señal , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Línea Celular , Células Cultivadas , Endotelio Vascular/citología , Masculino , Ratones , Ratones Endogámicos C57BL
2.
J Am Soc Nephrol ; 35(5): 549-565, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38506705

RESUMEN

SIGNIFICANCE STATEMENT: The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND: The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS: Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS: We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS: In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Células Endoteliales , Daño por Reperfusión , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Ratones , Células Endoteliales/metabolismo , Riñón/patología , Riñón/metabolismo , Masculino , Ratones Endogámicos C57BL , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38972305

RESUMEN

INTRODUCTION: Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS: We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS: Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p<0.01), 274 significantly enriched pathways (p<0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION: These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.

4.
Am J Physiol Renal Physiol ; 324(6): F532-F543, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102687

RESUMEN

Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.NEW & NOTEWORTHY Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.


Asunto(s)
Acidosis , Riñón , Animales , Ratones , Acidosis/metabolismo , Glucosa/metabolismo , Riñón/metabolismo , Lactatos/metabolismo , Mitocondrias/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo
5.
Nephrol Dial Transplant ; 38(10): 2276-2288, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37096392

RESUMEN

BACKGROUND: The roles of hypoxia and hypoxia inducible factor (HIF) during chronic kidney disease (CKD) are much debated. Interventional studies with HIF-α activation in rodents have yielded contradictory results. The HIF pathway is regulated by prolyl and asparaginyl hydroxylases. While prolyl hydroxylase inhibition is a well-known method to stabilize HIF-α, little is known about the effect asparaginyl hydroxylase factor inhibiting HIF (FIH). METHODS: We used a model of progressive proteinuric CKD and a model of obstructive nephropathy with unilateral fibrosis. In these models we assessed hypoxia with pimonidazole and vascularization with three-dimensional micro-computed tomography imaging. We analysed a database of 217 CKD biopsies from stage 1 to 5 and we randomly collected 15 CKD biopsies of various severity degrees to assess FIH expression. Finally, we modulated FIH activity in vitro and in vivo using a pharmacologic approach to assess its relevance in CKD. RESULTS: In our model of proteinuric CKD, we show that early CKD stages are not characterized by hypoxia or HIF activation. At late CKD stages, some areas of hypoxia are observed, but these are not colocalizing with fibrosis. In mice and in humans, we observed a downregulation of the HIF pathway, together with an increased FIH expression in CKD, according to its severity. Modulating FIH in vitro affects cellular metabolism, as described previously. In vivo, pharmacologic FIH inhibition increases the glomerular filtration rate of control and CKD animals and is associated with decreased development of fibrosis. CONCLUSIONS: The causative role of hypoxia and HIF activation in CKD progression is questioned. A pharmacological approach of FIH downregulation seems promising in proteinuric kidney disease.


Asunto(s)
Hipoxia , Oxigenasas de Función Mixta , Humanos , Animales , Ratones , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Microtomografía por Rayos X , Proteínas Represoras/genética , Regulación hacia Abajo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
6.
J Am Soc Nephrol ; 33(4): 810-827, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35273087

RESUMEN

INTRODUCTION: CKD is associated with alterations of tubular function. Renal gluconeogenesis is responsible for 40% of systemic gluconeogenesis during fasting, but how and why CKD affects this process and the repercussions of such regulation are unknown. METHODS: We used data on the renal gluconeogenic pathway from more than 200 renal biopsies performed on CKD patients and from 43 kidney allograft patients, and studied three mouse models, of proteinuric CKD (POD-ATTAC), of ischemic CKD, and of unilateral urinary tract obstruction. We analyzed a cohort of patients who benefitted from renal catheterization and a retrospective cohort of patients hospitalized in the intensive care unit. RESULTS: Renal biopsies of CKD and kidney allograft patients revealed a stage-dependent decrease in the renal gluconeogenic pathway. Two animal models of CKD and one model of kidney fibrosis confirm gluconeogenic downregulation in injured proximal tubule cells. This shift resulted in an alteration of renal glucose production and lactate clearance during an exogenous lactate load. The isolated perfused kidney technique in animal models and renal venous catheterization in CKD patients confirmed decreased renal glucose production and lactate clearance. In CKD patients hospitalized in the intensive care unit, systemic alterations of glucose and lactate levels were more prevalent and associated with increased mortality and a worse renal prognosis at follow-up. Decreased expression of the gluconeogenesis pathway and its regulators predicted faster histologic progression of kidney disease in kidney allograft biopsies. CONCLUSION: Renal gluconeogenic function is impaired in CKD. Altered renal gluconeogenesis leads to systemic metabolic changes with a decrease in glucose and increase in lactate level, and is associated with a worse renal prognosis.


Asunto(s)
Gluconeogénesis , Insuficiencia Renal Crónica , Animales , Gluconeogénesis/fisiología , Humanos , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Ratones , Insuficiencia Renal Crónica/metabolismo , Estudios Retrospectivos
7.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298145

RESUMEN

Hypertension affects over a billion adults worldwide and is a major risk factor for cardiovascular disease. Studies have reported that the microbiota and its metabolites regulate hypertension pathophysiology. Recently, tryptophan metabolites have been identified to contribute to and inhibit the progression of metabolic disorders and cardiovascular diseases, including hypertension. Indole propionic acid (IPA) is a tryptophan metabolite with reported protective effects in neurodegenerative and cardiovascular diseases; however, its involvement in renal immunomodulation and sodium handling in hypertension is unknown. In the current study, targeted metabolomic analysis revealed decreased serum and fecal IPA levels in mice with L-arginine methyl ester hydrochloride (L-NAME)/high salt diet-induced hypertension (LSHTN) compared to normotensive control mice. Additionally, kidneys from LSHTN mice had increased T helper 17 (Th17) cells and decreased T regulatory (Treg) cells. Dietary IPA supplementation in LSHTN mice for 3 weeks resulted in decreased systolic blood pressure, along with increased total 24 h and fractional sodium excretion. Kidney immunophenotyping demonstrated decreased Th17 cells and a trend toward increased Treg cells in IPA-supplemented LSHTN mice. In vitro, naïve T cells from control mice were skewed into Th17 or Treg cells. The presence of IPA decreased Th17 cells and increased Treg cells after 3 days. These results identify a direct role for IPA in attenuating renal Th17 cells and increasing Treg cells, leading to improved sodium handling and decreased blood pressure. IPA may be a potential metabolite-based therapeutic option for hypertension.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Animales , Ratones , Células Th17/metabolismo , Presión Sanguínea , Linfocitos T Reguladores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Triptófano/metabolismo , Hipertensión/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/metabolismo , Indoles/metabolismo , Sodio/metabolismo
8.
Clin Sci (Lond) ; 136(23): 1759-1772, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36345993

RESUMEN

BACKGROUND: Hypertension (HTN) is associated with renal proinflammatory immune cell infiltration and increased sodium retention. We reported previously that renal lymphatic vessels, which are responsible for trafficking immune cells from the interstitial space to draining lymph nodes, increase in density under hypertensive conditions. We also demonstrated that augmenting renal lymphatic density can prevent HTN in mice. Whether renal lymphangiogenesis can treat HTN in mice is unknown. We hypothesized that genetically inducing renal lymphangiogenesis after the establishment of HTN would attenuate HTN in male and female mice from three different HTN models. METHODS: Mice with inducible kidney-specific overexpression of VEGF-D (KidVD) experience renal lymphangiogenesis upon doxycycline administration. HTN was induced in KidVD+ and KidVD- mice by subcutaneous release of angiotensin II, administration of the nitric oxide synthase inhibitor L-NAME, or consumption of a 4% salt diet following a L-NAME priming and washout period. After a week of HTN stimuli treatment, doxycycline was introduced. Systolic blood pressure (SBP) readings were taken weekly. Kidney function was determined from urine and serum measures. Kidneys were processed for RT-qPCR, flow cytometry, and imaging. RESULTS: Mice that underwent renal-specific lymphangiogenesis had significantly decreased SBP and renal proinflammatory immune cells. Additionally, renal lymphangiogenesis was associated with a decrease in sodium transporter expression and increased fractional excretion of sodium, indicating improved sodium handling efficiency. CONCLUSIONS: These findings demonstrate that augmenting renal lymphangiogenesis can treat HTN in male and female mice by improving renal immune cell trafficking and sodium handling.


Asunto(s)
Hipertensión , Linfangiogénesis , Ratones , Masculino , Femenino , Animales , NG-Nitroarginina Metil Éster/farmacología , Doxiciclina/metabolismo , Riñón/metabolismo , Sodio/metabolismo
9.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743063

RESUMEN

Lymphedema and lipedema are complex diseases. While the external presentation of swollen legs in lower-extremity lymphedema and lipedema appear similar, current mechanistic understandings of these diseases indicate unique aspects of their underlying pathophysiology. They share certain clinical features, such as fluid (edema), fat (adipose expansion), and fibrosis (extracellular matrix remodeling). Yet, these diverge on their time course and known molecular regulators of pathophysiology and genetics. This divergence likely indicates a unique route leading to interstitial fluid accumulation and subsequent inflammation in lymphedema versus lipedema. Identifying disease mechanisms that are causal and which are merely indicative of the condition is far more explored in lymphedema than in lipedema. In primary lymphedema, discoveries of genetic mutations link molecular markers to mechanisms of lymphatic disease. Much work remains in this area towards better risk assessment of secondary lymphedema and the hopeful discovery of validated genetic diagnostics for lipedema. The purpose of this review is to expose the distinct and shared (i) clinical criteria and symptomatology, (ii) molecular regulators and pathophysiology, and (iii) genetic markers of lymphedema and lipedema to help inform future research in this field.


Asunto(s)
Lipedema , Linfedema , Tejido Adiposo/patología , Edema/patología , Fibrosis , Humanos , Lipedema/diagnóstico , Lipedema/genética , Linfedema/genética , Linfedema/patología
10.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142221

RESUMEN

Lipedema is a disease with abnormally increased adipose tissue deposition and distribution. Pain sensations have been described in the clinical evaluation of lipedema, but its etiology remains poorly understood. We hypothesized that pain sensitivity measurements and ex vivo quantitation of neuronal cell body distribution in the skin would be lipedema stage-dependent, and could, thus, serve to objectively characterize neuropathic pain in lipedema. The pain was assessed by questionnaire and peripheral cutaneous mechanical sensitization (von-Frey) in lipedema (n = 27) and control (n = 23) consenting female volunteers. Dermal biopsies from (n = 11) Stages 1-3 lipedema and control (n = 10) participants were characterized for neuronal cell body and nociceptive neuropeptide calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF) distribution. Stage 2 or 3 lipedema participants responded positively to von Frey sensitization in the calf and thigh, and Stage 3 participants also responded in the arm. Lipedema abdominal skin displayed reduced Tuj-1+ neuronal cell body density, compared to healthy controls, while CGRP and NGF was significantly elevated in Stage 3 lipedema tissues. Together, dermal neuronal cell body loss is consistent with hyper-sensitization in patients with lipedema. Further study of neuropathic pain in lipedema may elucidate underlying disease mechanisms and inform lipedema clinical management and treatment impact.


Asunto(s)
Lipedema , Neuralgia , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Humanos , Factor de Crecimiento Nervioso , Neuralgia/etiología , Inflamación Neurogénica
11.
FASEB J ; 34(2): 2408-2424, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908015

RESUMEN

The mechanism of sodium retention and its location in kidney tubules may vary with time in nephrotic syndrome (NS). We studied the mechanisms of sodium retention in transgenic POD-ATTAC mice, which display an inducible podocyte-specific apoptosis. At day 2 after the induction of NS, the increased abundance of NHE3 and phosphorylated NCC in nephrotic mice compared with controls suggest that early sodium retention occurs mainly in the proximal and distal tubules. At day 3, the abundance of NHE3 normalized, phosphorylated NCC levels decreased, and cleavage and apical localization of γ-ENaC increased in nephrotic mice. These findings indicate that sodium retention shifted from the proximal and distal tubules to the collecting system. Increased cleavage and apical localization of γ-ENaC persisted at day 5 in nephrotic mice when hypovolemia resolved and steady-state was reached. Sodium retention and γ-ENaC cleavage were independent of the increased plasma levels of aldosterone. Nephrotic mice displayed decreased glomerular filtration rate and urinary potassium excretion associated with hyperkaliemia at day 3. Feeding nephrotic mice with a low potassium diet prevented hyperkaliemia, γ-ENaC cleavage, and led to persistent increased phosphorylation of NCC. These results suggest that potassium homeostasis is a major determinant of the tubular site of sodium retention in nephrotic mice.


Asunto(s)
Nefronas/metabolismo , Síndrome Nefrótico/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Homeostasis , Transporte Iónico/genética , Ratones , Ratones Transgénicos , Nefronas/patología , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Factores de Tiempo
12.
FASEB J ; 34(2): 2087-2104, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907991

RESUMEN

Proteinuria is associated with renal function decline and cardiovascular mortality. This association may be attributed in part to alterations of Klotho expression induced by albuminuria, yet the underlying mechanisms are unclear. The presence of albumin decreased Klotho expression in the POD-ATTAC mouse model of proteinuric kidney disease as well as in kidney epithelial cell lines. This downregulation was related to both decreased Klotho transcription and diminished protein half-life, whereas cleavage by ADAM proteases was not modified. The regulation was albumin specific since it was neither observed in the analbuminemic Col4α3-/- Alport mice nor induced by exposure of kidney epithelial cells to purified immunoglobulins. Albumin induced features of ER stress in renal tubular cells with ATF3/ATF4 activation. ATF3 and ATF4 induction downregulated Klotho through altered transcription mediated by their binding on the Klotho promoter. Inhibiting ER stress with 4-PBA decreased the effect of albumin on Klotho protein levels without altering mRNA levels, thus mainly abrogating the increased protein degradation. Taken together, albuminuria decreases Klotho expression through increased protein degradation and decreased transcription mediated by ER stress induction. This implies that modulating ER stress may improve proteinuria-induced alterations of Klotho expression, and hence renal and extrarenal complications associated with Klotho loss.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Albuminuria/metabolismo , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Glucuronidasa/biosíntesis , Túbulos Renales/metabolismo , Transcripción Genética , Factor de Transcripción Activador 3/genética , Albuminuria/genética , Albuminuria/patología , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Glucuronidasa/genética , Humanos , Túbulos Renales/patología , Proteínas Klotho , Ratones , Ratones Noqueados
13.
Brain Behav Immun ; 98: 219-233, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34389489

RESUMEN

Dendritic arborization is critical for the establishment and maintenance of precise neural circuits. Vascular endothelial growth factor D (VEGF-D), well-characterized as a "lymphangiogenic" growth factor, reportedly maintains dendritic arborization and synaptic strength in the hippocampus of adult mice through VEGF receptor (VEGFR-3) signaling. Here, we investigated the effect of chronic VEGFR-3-specific activation on adipose arbor morphometry using the Adipo-VD mouse, a model of inducible, adipose-specific VEGF-D overexpression. We examined whether adipose tissue innervation was preserved or functionally different in Adipo-VD mice during stress in vivo and if VEGFR-3 signaling afforded neuroprotection to challenged neurons in vitro. Chronic VEGFR-3 signaling in Adipo-VD subcutaneous adipose tissue resulted in a reduction in the dendrite length, dendritic terminal branches (filament length), and dendritic terminal branch volume (filament volume), but increased dendrite branching. We also identified reduced stimulus-evoked excitatory sympathetic nerve activity in Adipo-VD mice. Following 6-hydroxydopamine (6-OHDA) denervation, Adipo-VD dendritic arbors were preserved, including improved dendritic branch volume, length, and dendritic branches than in wildtype tissues. In vitro, we found that chronic elevation of VEGFR-3 signaling in developing mVC neurons changes the dendritic arbor complexity and improves stress-induced structure remodeling. Developing neurons are conferred neuroprotection against stress, potentially by upregulation of proteolytic conversion of pro-BDNF to mature BDNF. Mature neurons, however, display improved dendritic arbor complexity, and unaltered dendritic structural remodeling and improved resistance to stress with VEGFR-3 signaling. Overall, chronically increasing VEGFR-3 signaling in neurons has a synergistic impact on neurosensitization and neuroprotection during stress.


Asunto(s)
Factor D de Crecimiento Endotelial Vascular , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Dendritas , Ratones , Plasticidad Neuronal , Neuronas , Transducción de Señal
14.
Nephrol Dial Transplant ; 36(1): 60-68, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33099633

RESUMEN

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous coenzyme involved in electron transport and a co-substrate for sirtuin function. NAD+ deficiency has been demonstrated in the context of acute kidney injury (AKI). METHODS: We studied the expression of key NAD+ biosynthesis enzymes in kidney biopsies from human allograft patients and patients with chronic kidney disease (CKD) at different stages. We used ischaemia-reperfusion injury (IRI) and cisplatin injection to model AKI, urinary tract obstruction [unilateral ureteral obstruction (UUO)] and tubulointerstitial fibrosis induced by proteinuria to investigate CKD in mice. We assessed the effect of nicotinamide riboside (NR) supplementation on AKI and CKD in animal models. RESULTS: RNA sequencing analysis of human kidney allograft biopsies during the reperfusion phase showed that the NAD+de novo synthesis is impaired in the immediate post-transplantation period, whereas the salvage pathway is stimulated. This decrease in de novo NAD+ synthesis was confirmed in two mouse models of IRI where NR supplementation prevented plasma urea and creatinine elevation and tubular injury. In human biopsies from CKD patients, the NAD+de novo synthesis pathway was impaired according to CKD stage, with better preservation of the salvage pathway. Similar alterations in gene expression were observed in mice with UUO or chronic proteinuric glomerular disease. NR supplementation did not prevent CKD progression, in contrast to its efficacy in AKI. CONCLUSION: Impairment of NAD+ synthesis is a hallmark of AKI and CKD. NR supplementation is beneficial in ischaemic AKI but not in CKD models.


Asunto(s)
Lesión Renal Aguda/patología , Modelos Animales de Enfermedad , Niacinamida/análogos & derivados , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/patología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Niacinamida/deficiencia , Compuestos de Piridinio , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
15.
Am J Pathol ; 189(4): 924-939, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30878136

RESUMEN

Obese adipose tissue expansion is an inflammatory process that results in dysregulated lipolysis, increased circulating lipids, ectopic lipid deposition, and systemic insulin resistance. Lymphatic vessels provide a route of fluid, macromolecule, and immune cell clearance, and lymphangiogenesis increases this capability. Indeed, inflammation-associated lymphangiogenesis is critical in resolving acute and chronic inflammation, but it is largely absent in obese adipose tissue. Enhancing adipose tissue lymphangiogenesis could, therefore, improve metabolism in obesity. To test this hypothesis, transgenic mice with doxycycline-inducible expression of murine vascular endothelial growth factor (VEGF)-D under a tightly controlled Tet-On promoter were crossed with adipocyte-specific adiponectin-reverse tetracycline-dependent transactivator mice (Adipo-VD) to stimulate adipose tissue-specific lymphangiogenesis during 16-week high-fat diet-induced obesity. Adipose VEGF-D overexpression induced de novo lymphangiogenesis in murine adipose tissue, and obese Adipo-VD mice exhibited enhanced glucose clearance, lower insulin levels, and reduced liver triglycerides. On ß-3 adrenergic stimulation, Adipo-VD mice exhibited more rapid and increased glycerol flux from adipose tissue, suggesting that the lymphatics are a potential route of glycerol clearance. Resident macrophage crown-like structures were scarce and total F4/80+ macrophages were reduced in obese Adipo-VD s.c. adipose tissue with evidence of increased immune trafficking from the tissue. Augmenting VEGF-D signaling and lymphangiogenesis specifically in adipose tissue, therefore, reduces obesity-associated immune accumulation and improves metabolic responsiveness.


Asunto(s)
Adiponectina/fisiología , Tejido Adiposo/fisiología , Linfangiogénesis , Vasos Linfáticos/fisiología , Obesidad/metabolismo , Factor D de Crecimiento Endotelial Vascular/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Resistencia a la Insulina , Lipólisis , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos , Obesidad/etiología , Obesidad/patología
16.
Clin Sci (Lond) ; 134(24): 3237-3257, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33346358

RESUMEN

Hypertension is one of the most prevalent diseases that leads to end organ damage especially affecting the heart, kidney, brain, and eyes. Numerous studies have evaluated the association between hypertension and impaired sexual health, in both men and women. The detrimental effects of hypertension in men includes erectile dysfunction, decrease in semen volume, sperm count and motility, and abnormal sperm morphology. Similarly, hypertensive females exhibit decreased vaginal lubrication, reduced orgasm, and several complications in pregnancy leading to fetal and maternal morbidity and mortality. The adverse effect of hypertension on male and female fertility is attributed to hormonal imbalance and changes in the gonadal vasculature. However, mechanistic studies investigating the impact of hypertension on gonads in more detail on a molecular basis remain scarce. Hence, the aim of the current review is to address and summarize the effects of hypertension on reproductive health, and highlight the importance of research on the effects of hypertension on gonadal inflammation and lymphatics.


Asunto(s)
Gónadas/fisiopatología , Hipertensión/fisiopatología , Inflamación/fisiopatología , Linfangiogénesis , Reproducción/fisiología , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Gónadas/efectos de los fármacos , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Inflamación/complicaciones , Reproducción/efectos de los fármacos
17.
Circ Res ; 122(8): 1094-1101, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29475981

RESUMEN

RATIONALE: Hypertension is associated with renal infiltration of activated immune cells; however, the role of renal lymphatics and immune cell exfiltration is unknown. OBJECTIVE: We tested the hypotheses that increased renal lymphatic density is associated with 2 different forms of hypertension in mice and that further augmenting renal lymphatic vessel expansion prevents hypertension by reducing renal immune cell accumulation. METHODS AND RESULTS: Mice with salt-sensitive hypertension or nitric oxide synthase inhibition-induced hypertension exhibited significant increases in renal lymphatic vessel density and immune cell infiltration associated with inflammation. Genetic induction of enhanced lymphangiogenesis only in the kidney, however, reduced renal immune cell accumulation and prevented hypertension. CONCLUSIONS: These data demonstrate that renal lymphatics play a key role in immune cell trafficking in the kidney and blood pressure regulation in hypertension.


Asunto(s)
Hipertensión/prevención & control , Riñón/inmunología , Linfangiogénesis , Vasos Linfáticos/fisiopatología , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Proteínas de Unión al Calcio , Movimiento Celular , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Riñón/fisiopatología , Linfangiogénesis/genética , Macrófagos/inmunología , Ratones , Ratones Transgénicos , NG-Nitroarginina Metil Éster/toxicidad , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Especificidad de Órganos , Receptores Acoplados a Proteínas G/metabolismo , Cloruro de Sodio Dietético/toxicidad , Proteínas de Dominio T Box/biosíntesis , Proteínas de Dominio T Box/genética , Células TH1/inmunología , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética , Factor D de Crecimiento Endotelial Vascular/biosíntesis , Factor D de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
20.
Am J Pathol ; 187(9): 1984-1997, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28683257

RESUMEN

Chylous pleural effusion (chylothorax) frequently accompanies lymphatic vessel malformations and other conditions with lymphatic defects. Although retrograde flow of chyle from the thoracic duct is considered a potential mechanism underlying chylothorax in patients and mouse models, the path chyle takes to reach the thoracic cavity is unclear. Herein, we use a novel transgenic mouse model, where doxycycline-induced overexpression of vascular endothelial growth factor (VEGF)-C was driven by the adipocyte-specific promoter adiponectin (ADN), to determine how chylothorax forms. Surprisingly, 100% of adult ADN-VEGF-C mice developed chylothorax within 7 days. Rapid, consistent appearance of chylothorax enabled us to examine the step-by-step development in otherwise normal adult mice. Dynamic imaging with a fluorescent tracer revealed that lymph in the thoracic duct of these mice could enter the thoracic cavity by retrograde flow into enlarged paravertebral lymphatics and subpleural lymphatic plexuses that had incompetent lymphatic valves. Pleural mesothelium overlying the lymphatic plexuses underwent exfoliation that increased during doxycycline exposure. Together, the findings indicate that chylothorax in ADN-VEGF-C mice results from retrograde flow of chyle from the thoracic duct into lymphatic tributaries with defective valves. Chyle extravasates from these plexuses and enters the thoracic cavity through exfoliated regions of the pleural mesothelium.


Asunto(s)
Quilotórax/genética , Sistema Linfático/anomalías , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Quilotórax/patología , Vasos Linfáticos/anomalías , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA