Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 40(20): 10468-10476, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38713000

RESUMEN

3D texturing by self-assembly at the air-water interface has recently been proposed. The hypothesis of this work is that, if this is true, such domain formation should be inferable directly from pressure-area isotherms and be thermodynamically stable. Monolayers of branched fatty acid mixtures with straight chain analogues and their stability are thus studied using a combination of pressure-area isotherms, thermodynamic analysis, in situ Brewster angle microscopy, and atomic force microscopy of both LB-deposited and drop-cast films on silicon wafers. Isotherms reflecting the behavior of monodisperse 3D domains are shown to be independent of compression rate and display long-term stability. Gibbs analysis further confirms the thermodynamic rather than kinetic origin of such novel species by revealing that deviations from ideal mixing can be explained only a priori by differences in the topography of the water surface, thus also indirectly confirming the self-assembly deformation of the water interface. The intrinsic self-assembly curvature and miscibility of the two fatty acids is confirmed by drop-casting, which also provides a rapid, tunable thin-film preparation approach. Finally, the longevity of the nanostructured films is extraordinary, the long-range order of the deposited films increases with equilibration time at the water interface, and the integrity of the nanopatterns remains intact on the scale of years.

2.
Small ; 19(43): e2300912, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37395635

RESUMEN

A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]- , bis(mandelato)borate, [BMB]- and bis(salicylato)borate, [BScB]- , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]- by [BMB]- , or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.

3.
Perception ; 50(8): 728-732, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34152243

RESUMEN

The oft discussed and fretted over environmental influences on hair have led to a popular consensus which suggests that elevated temperature and humidity lead to frizzier, wilder hair. However, few attempts at actually quantifying these effects have been made. Although frizziness is usually perceived visually, here the influence of variations in temperature and humidity on the tactile perception and friction of curly and straight hair were investigated. It is shown that changes in humidity may disproportionately affect perceived frizziness of curly hair by touch due to concurrent changes in the tactile friction.


Asunto(s)
Percepción del Tacto , Fricción , Cabello , Humanos , Tacto
4.
Exp Brain Res ; 238(6): 1511-1524, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32447410

RESUMEN

Humans are extraordinarily skilled in the tactile evaluation of, and differentiation between, surfaces. The chemical and mechanical properties of these surfaces are translated into tactile signals during haptic exploration by mechanoreceptors in our skin, which are specialized to respond to different types of temporal and mechanical stimulation. Describing the effects of measurable physical characteristics on the human response to tactile exploration of surfaces is of great interest to manufacturers of household materials so that the haptic experience can be considered during design, product development and quality control. In this study, methods from psychophysics and materials science are combined to advance current understanding of which physical properties affect tactile perception of a range of furniture surfaces, i.e., foils and coatings, thus creating a tactile map of the furniture product landscape. Participants' responses in a similarity scaling task were analyzed using INDSCAL from which three haptic dimensions were identified. Results show that specific roughness parameters, tactile friction and vibrational information, as characterized by a stylus profilometer, a Forceboard, and a biomimetic synthetic finger, are important for tactile differentiation and preferences of these surface treatments. The obtained dimensions are described as distinct combinations of the surface properties characterized, rather than as 'roughness' or 'friction' independently. Preferences by touch were related to the roughness, friction and thermal properties of the surfaces. The results both complement and advance current understanding of how roughness and friction relate to tactile perception of surfaces.


Asunto(s)
Conducta de Elección/fisiología , Percepción del Tacto/fisiología , Adulto , Femenino , Fricción , Humanos , Masculino , Vibración , Adulto Joven
5.
Phys Chem Chem Phys ; 22(34): 19162-19171, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32812565

RESUMEN

Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% w/w), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% w/w), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary atomic force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed. Together such results provide valuable molecular insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviours.

6.
Phys Chem Chem Phys ; 22(48): 28191-28201, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33295339

RESUMEN

The effect of water on the electroactive structuring of a tribologically relevant ionic liquid (IL) when dispersed in a polar solvent has been investigated at a gold electrode interface using neutron reflectivity (NR). For all solutions studied, the addition of small amounts of water led to clear changes in electroactive structuring of the IL at the electrode interface, which was largely determined by the bulk IL concentration. At a dilute IL concentration, the presence of water gave rise to a swollen interfacial structuring, which exhibited a greater degree of electroresponsivity with applied potential compared to an equivalent dry solution. Conversely, for a concentrated IL solution, the presence of water led to an overall thinning of the interfacial region and a crowding-like structuring, within which the composition of the inner layer IL layers varied systematically with applied potential. Complementary nanotribotronic atomic force microscopy (AFM) measurements performed for the same IL concentration, in dry and ambient conditions, show that the presence of water reduces the lubricity of the IL boundary layers. However, consistent with the observed changes in the IL layers observed by NR, reversible and systematic control of the friction coefficient with applied potential was still achievable. Combined, these measurements provide valuable insight into the implications of water on the interfacial properties of ILs at electrified interfaces, which inevitably will determine their applicability in tribotronic and electrochemical contexts.

7.
Phys Chem Chem Phys ; 22(16): 8450-8460, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32271337

RESUMEN

Control of the interfacial structures of ionic liquids (ILs) at charged interfaces is important to many of their applications, including in energy storage solutions, sensors and advanced lubrication technologies utilising electric fields. In the case of the latter, there is an increasing demand for the study of non-halogenated ILs, as many fluorinated anions have been found to produce corrosive and toxic halides under tribological conditions. Here, the interfacial structuring of a series of four imidazolium ILs ([CnC1Im]) of varying alkyl chain lengths (n = 5, 6, 7, 10), with a non-halogenated borate-based anion ([BOB]), have been studied at charged interfaces using sum frequency generation (SFG) spectroscopy and neutron reflectivity (NR). For all alkyl chain lengths, the SFG spectra show that the cation imidazolium ring responds to the surface charge by modifying its orientation with respect to the surface normal. In addition, the combination of SFG spectra with electrochemical NR measurements reveals that the longest alkyl chain length (n = 10) forms a bilayer structure at all charged interfaces, independent of the ring orientation. These results demonstrate the tunability of IL interfacial layers through the use of surface charge, as well as effect of the cation alkyl chain length, and provide valuable insight into the charge compensation mechanisms of ILs.

8.
Langmuir ; 35(48): 15692-15700, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31581771

RESUMEN

The quartz crystal microbalance (QCM) has been used to study how the interfacial layer of an ionic liquid dissolved in a polar oil at low weight percentages responds to changes in applied potential. The changes in surface composition at the QCM gold surface depend on both the magnitude and sign of the applied potential. The time-resolved response indicates that the relaxation kinetics are limited by the diffusion of ions in the interfacial region and not in the bulk, since there is no concentration dependence. The measured mass changes cannot be explained only in terms of simple ion exchange; the relative molecular volumes of the ions and the density changes in response to ion exclusion must be considered. The relaxation behavior of the potential between the electrodes upon disconnecting the applied potential is more complex than that observed for pure ionic liquids, but a measure of the surface charge can be extracted from the exponential decay when the rapid initial potential drop is accounted for. The adsorbed film at the gold surface consists predominantly of ionic liquid despite the low concentration, which is unsurprising given the surtactant-like structures of (some of) the ionic liquid ions. Changes in response to potential correspond to changes in the relative numbers of cations and anions, rather than a change in the oil composition. No evidence for an electric field induced change in viscosity is observed. This work shows conclusively that electric potentials can be used to control the surface composition, even in an oil-based system, and paves the way for other ion solvent studies.

9.
Langmuir ; 34(8): 2630-2636, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29405715

RESUMEN

Selenols are considered as an alternative to thiols in self-assembled monolayers, but the Se-C bond is one limiting factor for their usefulness. In this study, we address the stability of the Se-C bond by a combined experimental and theoretical investigation of gas-phase-deposited hexane selenol (CH3(CH2)5SeH) on Au(111) using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory (DFT). Experimentally, we find that initial adsorption leaves atomic Se on the surface without any carbon left on the surface, whereas further adsorption generates a saturated selenolate layer. The Se 3d component from atomic Se appears at 0.85 eV lower binding energy than the selenolate-related component. DFT calculations show that the most stable structure of selenols on Au(111) is in the form of RSe-Au-SeR complexes adsorbed on the unreconstructed Au(111) surface. This is similar to thiols on Au(111). Calculated Se 3d core-level shifts between elemental Se and selenolate in this structure nicely reproduce the experimentally recorded shifts. Dissociation of RSeH and subsequent formation of RH are found to proceed with high barriers on defect-free Au(111) terraces, with the highest barrier for scissoring R-Se. However, at steps, these barriers are considerably lower, allowing for Se-C bond breaking and hexane desorption, leaving elemental Se at the surface. Hexane is formed by replacing the Se-C bond with a H-C bond by using the hydrogen liberated from the selenol to selenolate transformation.

10.
J Chem Phys ; 148(19): 193806, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30307199

RESUMEN

Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

11.
Langmuir ; 33(46): 13180-13188, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29048171

RESUMEN

Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture-due to the fast condensation kinetics-leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive effect under the same ambient conditions. The markedly different behavior detected by force measurements clearly shows the sticky and nonsticky propensity of the materials and allows a mechanistic description.


Asunto(s)
Comprimidos/química , Excipientes , Lactosa , Microscopía de Fuerza Atómica , Polvos , Propiedades de Superficie
12.
Langmuir ; 33(4): 920-926, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28045271

RESUMEN

The nature of the surfaces of particles of pharmaceutical ingredients, food powders, and polymers is a determining factor for their performance in for example tableting, powder handling, or mixing. Changes on the surface structure of the material will impact the flow properties, dissolution rate, and tabletability of the powder blend. For crystalline materials, surface amorphization is a phenomenon which is known to impact performance. Since it is important to measure and control the level of amorphicity, several characterization techniques are available to determine the bulk amorphous content of a processed material. The possibility of characterizing the degree of amorphicity at the surface, for example by studying the mechanical properties of the particles' surface at the nanoscale, is currently only offered by atomic force microscopy (AFM). The AFM PeakForce QNM technique has been used to measure the variation in energy dissipation (eV) at the surface of the particles which sheds light on the mechanical changes occurring as a result of amorphization or recrystallization events. Two novel approaches for the characterization of amorphicity are presented here. First, since particles are heterogeneous, we present a methodology to present the results of extensive QNM analysis of multiple particles in a coherent and easily interpreted manner, by studying cumulative distributions of dissipation data with respect to a threshold value which can be used to distinguish the crystalline and amorphous states. To exemplify the approach, which is generally applicable to any material, reference materials of purely crystalline α-lactose monohydrate and completely amorphous spray dried lactose particles were compared to a partially amorphized α-lactose monohydrate sample. Dissipation data are compared to evaluations of the lactose samples with conventional AFM and SEM showing significant topographical differences. Finally, the recrystallization of the surface amorphous regions in response to humidity was followed by studying the dissipation response of a well-defined surface region over time, which confirms both that dissipation measurement is a useful measure of surface amorphicity and that significant recrystallization occurs at the surface in response to humidity.


Asunto(s)
Polvos/química , Cristalización , Humedad , Microscopía de Fuerza Atómica , Propiedades de Superficie
13.
Faraday Discuss ; 199: 615-630, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28675400

RESUMEN

It is an honour to be charged with providing the concluding remarks for a Faraday Discussion. As many have remarked before, it is nonetheless a prodigious task, and what follows is necessarily a personal, and probably perverse, view of a watershed event in the Chemical Physics of Electroactive materials. The spirit of the conference was captured in a single sentence during the meeting itself."It is the nexus between rheology, electrochemistry, colloid science and energy storage". The current scientific climate is increasingly dominated by a limited number of global challenges, and there is thus a tendency for research to resemble a football match played by 6 year olds, where everyone on the field chases the (funding) ball instead of playing to their "discipline". It is thus reassuring to see how the application of rigorous chemical physics is leading to ingenious new solutions for both energy storage and harvesting, via, for example, nanoactuation, electrowetting, ionic materials and nanoplasmonics. In fact, the same language of chemical physics allows seamless transition between applications as diverse as mechano-electric energy generation, active moisture transport and plasmonic shutters - even the origins of life were addressed in the context of electro-autocatalysis!

14.
Faraday Discuss ; 199: 311-322, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28422196

RESUMEN

Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li+ cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI- anion rich boundary layer at positive potentials is more lubricating than the Li+ cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li+ cations for both surfaces at negative potentials. However, at Au(111), the TFSI- rich boundary layer is less lubricating than the Li+ rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO3- rich boundary layer.

15.
Phys Chem Chem Phys ; 19(38): 25853-25858, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28932828

RESUMEN

Diffusion of EAN confined between polar glass plates separated by a few micrometers is higher by a factor of ca. 2 as compared to bulk values. Formation of a new phase, different to the bulk, was suggested.

16.
Biomacromolecules ; 17(2): 669-78, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26750986

RESUMEN

Effects of electrostatics and peptide size on peptide interactions with surface-bound microgels were investigated with ellipsometry, confocal microscopy, and atomic force microscopy (AFM). Results show that binding of cationic poly-L-lysine (pLys) to anionic, covalently immobilized, poly(ethyl acrylate-co-methacrylic acid) microgels increased with increasing peptide net charge and microgel charge density. Furthermore, peptide release was facilitated by decreasing either microgel or peptide charge density. Analogously, increasing ionic strength facilitated peptide release for short peptides. As a result of peptide binding, the surface-bound microgels displayed pronounced deswelling and increased mechanical rigidity, the latter quantified by quantitative nanomechanical mapping. While short pLys was found to penetrate the entire microgel network and to result in almost complete charge neutralization, larger peptides were partially excluded from the microgel network, forming an outer peptide layer on the microgels. As a result of this difference, microgel flattening was more influenced by the lower Mw peptide than the higher. Peptide-induced deswelling was found to be lower for higher Mw pLys, the latter effect not observed for the corresponding microgels in the dispersed state. While the effects of electrostatics on peptide loading and release were similar to those observed for dispersed microgels, there were thus considerable effects of the underlying surface on peptide-induced microgel deswelling, which need to be considered in the design of surface-bound microgels as carriers of peptide loads, for example, in drug delivery or in functionalized biomaterials.


Asunto(s)
Portadores de Fármacos/química , Resinas Acrílicas/química , Geles , Concentración de Iones de Hidrógeno , Peso Molecular , Concentración Osmolar , Polilisina/química , Unión Proteica , Propiedades de Superficie
17.
Biomacromolecules ; 17(9): 2801-11, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27476615

RESUMEN

The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.


Asunto(s)
Celulosa/química , Entropía , Glucanos/química , Nanopartículas/química , Agua/química , Xilanos/química , Adsorción , Enlace de Hidrógeno , Microscopía de Fuerza Atómica , Tecnicas de Microbalanza del Cristal de Cuarzo , Resonancia por Plasmón de Superficie
18.
Phys Chem Chem Phys ; 18(13): 9232-9, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26976694

RESUMEN

Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.

19.
Phys Chem Chem Phys ; 18(38): 26609-26615, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27711405

RESUMEN

According to recent findings, the steady shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf2N]) decreases significantly under the influence of electric potential. This implies a causal connection between nanoscale ordering at the electrified interface and a macroscopic change of transport properties. To study this phenomenon in more detail, we reproduced the above-mentioned measurements; however, we find no evidence that the viscosity of [Emim][Tf2N] is a function of electric potential. Additionally, our results show that steady shear measurements can lead to artifacts that, at first glance, may appear to be potential-induced changes in viscosity. We demonstrate that the artifacts result from a sliding electrical contact at the working electrode of the electrochemical cell and we suggest to consider our findings for future viscosity measurements of ionic liquids.

20.
Phys Chem Chem Phys ; 18(9): 6541-7, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26865399

RESUMEN

The efficacy of ionic liquids (ILs) as lubricant additives to a model base oil has been probed at the nanoscale and macroscale as a function of IL concentration using the same materials. Silica surfaces lubricated with mixtures of the IL trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate and hexadecane are probed using atomic force microscopy (AFM) (nanoscale) and ball-on-disc tribometer (macroscale). At both length scales the pure IL is a much more effective lubricant than hexadecane. At the nanoscale, 2.0 mol% IL (and above) in hexadecane lubricates the silica as well as the pure IL due to the formation of a robust IL boundary layer that separates the sliding surfaces. At the macroscale the lubrication is highly load dependent; at low loads all the mixtures lubricate as effectively as the pure IL, whereas at higher loads rather high concentrations are required to provide IL like lubrication. Wear is also pronounced at high loads, for all cases except the pure IL, and a tribofilm is formed. Together, the nano- and macroscales results reveal that the IL is an effective lubricant additive - it reduces friction - in both the boundary regime at the nanoscale and mixed regime at the macroscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA