Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Res ; 261: 119713, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094896

RESUMEN

Indoor air quality (IAQ) in educational facilities is crucial due to the extended time students spend in those environments, affecting their health, academic performance, and attendance. This paper aimed to review relevant parameters (building characteristics and factors related with occupancy and activities) for assessing IAQ in educational facilities, and to identify the parameters to consider when performing an IAQ monitoring campaign in schools. It also intended to identify literature gaps and suggest future research directions. A narrative literature review was conducted, focusing on seven key parameters: building location, layout and construction materials, ventilation and air cleaning systems, finishing materials, occupant demographics, occupancy, and activities. The findings revealed that carbon dioxide (CO2) levels were predominantly influenced by classroom occupancy and ventilation rates, while particulate matter (PM) concentrations were significantly influenced by the building's location, design, and occupant activities. Furthermore, this review highlighted the presence of other pollutants, such as trace metals, polycyclic aromatic hydrocarbons (PAHs), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and radon, linking them to specific factors within the school environment. Different IAQ patterns, and consequently different parameters, were observed in various school areas, including classrooms, canteens, gymnasiums, computer rooms, and laboratories. While substantial literature exists on IAQ in schools, significant gaps still remain. This study highlighted the need for more studies in middle and high schools, as well as in other indoor microenvironments within educational settings beyond classrooms. Additionally, it underscored the need for comprehensive exposure assessments, long-term studies, and the impacts of new materials on IAQ including the effects of secondary reactions on surfaces. Seasonal variations and the implications of emerging technologies were also identified as requiring further investigation. Addressing those gaps through targeted research and considering the most updated standards and guidelines for IAQ, could lead to define more effective strategies for improving IAQ and safeguarding the students' health and performance.

2.
Indoor Air ; 32(11): e13144, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36437669

RESUMEN

Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Humanos , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis
3.
Discov Med ; 36(187): 1544-1554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190371

RESUMEN

Cardiovascular disease is a significant health concern worldwide, and varied effective treatment and prevention methods have been developed. Among these, tailored biomaterials-based strategies such as stents, scaffolds, patches, and drug delivery systems have emerged as a promising avenue. These devices are designed to match the mechanical and biological mechanisms of the cardiovascular system, ensuring optimal performance and compatibility. By effectively treating or preventing cardiovascular diseases, these devices have the potential to improve patient health outcomes significantly. They can restore blood flow by addressing blocked arteries and regenerate damaged cardiac tissue by delivering bioactive agents or cells directly to the affected area in a targeted, sustained, and controllable manner. Therefore, the objective of this article is to summarize the available evidence on these tailored biomaterial-based tunable cardiovascular devices. This knowledge can help to transform cardiovascular medicine for the treatment or prevention of cardiovascular disease and restore cardiac function to improve patients' quality of life.


Asunto(s)
Materiales Biocompatibles , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/terapia , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Stents , Andamios del Tejido/química , Animales
4.
J Nanosci Nanotechnol ; 19(11): 6949-6955, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039846

RESUMEN

Infection is one of the major factors affecting wound healing. The use of polymeric fibrous constructs or scaffolds with encapsulated biologically active components has shown great potential in topical wound care as wound dressings to expedite wound healing process; however, there is a limitation in precise control over the release of active components. Therefore, in this study, the authors developed a facile method for controlled fabrication of poly(-caprolactone) (PCL) microfibrous constructs with silver (Ag) nanoparticles as antibacterial agent by single capillary electrospinning. By optimizing spinning parameters, the PCL microfibrous constructs were fabricated. The encapsulation of Ag nanoparticles within the PCL microfibers was confirmed using microstructural analysis. The encapsulation efficacy and release profile of Ag was evaluated in vitro. The diffusion study further revealed the controlled release and optimal bioavailability of Ag during the experimental period. in vitro assessment of antibacterial activity of electrospun hybrid constructs showed a high antibacterial activity and an inhibitory effect on the growth of both staphylococcus aureus and escherichia coli bacteria when compared to PCL and their efficiency of antibacterial activity also varied with respect to the percent of encapsulated Ag nanoparticles. This kind of Ag nanoparticles-loaded PCL microfibrous constructs may be considered for wound care applications.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Caproatos , Lactonas , Poliésteres/farmacología , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA