Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497670

RESUMEN

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Asunto(s)
Hipersensibilidad a los Alimentos , Mastocitos , Humanos , Mastocitos/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunoglobulina E/metabolismo , Interleucina-33/metabolismo , Interleucina-13/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Inflamación/metabolismo , Degranulación de la Célula
2.
J Immunol ; 212(8): 1277-1286, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381001

RESUMEN

IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.


Asunto(s)
Asma , MicroARNs , Animales , Ratones , Asma/genética , Citocinas/genética , Retroalimentación , Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33 , Linfocitos/metabolismo , Mastocitos/metabolismo , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo
3.
J Physiol ; 602(14): 3401-3422, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843407

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) has been characterized by lower blood flow to exercising limbs and lower peak oxygen utilization ( V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), possibly associated with disease-related changes in sympathetic (α-adrenergic) signaling. Thus, in seven patients with HFpEF (70 ± 6 years, 3 female/4 male) and seven controls (CON) (66 ± 3 years, 3 female/4 male), we examined changes (%Δ) in leg blood flow (LBF, Doppler ultrasound) and leg V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ to intra-arterial infusion of phentolamine (PHEN, α-adrenergic antagonist) or phenylephrine (PE, α1-adrenergic agonist) at rest and during single-leg knee-extension exercise (0, 5 and 10 W). At rest, the PHEN-induced increase in LBF was not different between groups, but PE-induced reductions in LBF were lower in HFpEF (-16% ± 4% vs. -26% ± 5%, HFpEF vs. CON; P < 0.05). During exercise, the PHEN-induced increase in LBF was greater in HFpEF at 10 W (16% ± 8% vs. 8% ± 5%; P < 0.05). PHEN increased leg V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ in HFpEF (10% ± 3%, 11% ± 6%, 15% ± 7% at 0, 5 and 10 W; P < 0.05) but not in controls (-1% ± 9%, -4% ± 2%, -1% ± 5%; P = 0.24). The 'magnitude of sympatholysis' (PE-induced %Δ LBF at rest - PE-induced %Δ LBF during exercise) was lower in patients with HFpEF (-6% ± 4%, -6% ± 6%, -7% ± 5% vs. -13% ± 6%, -17% ± 5%, -20% ± 5% at 0, 5 and 10 W; P < 0.05) and was positively related to LBF, leg oxygen delivery, leg V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , and the PHEN-induced increase in LBF (P < 0.05). Together, these data indicate that excessive α-adrenergic vasoconstriction restrains blood flow and limits V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ of the exercising leg in patients with HFpEF, and is related to impaired functional sympatholysis in this patient group. KEY POINTS: Sympathetic (α-adrenergic)-mediated vasoconstriction is exaggerated during exercise in patients with heart failure with preserved ejection fraction (HFpEF), which may contribute to limitations of blood flow, oxygen delivery and oxygen utilization in the exercising muscle. The ability to adequately attenuate α1-adrenergic vasoconstriction (i.e. functional sympatholysis) within the vasculature of the exercising muscle is impaired in patients with HFpEF. These observations extend our current understanding of HFpEF pathophysiology by implicating excessive α-adrenergic restraint and impaired functional sympatholysis as important contributors to disease-related impairments in exercising muscle blood flow and oxygen utilization in these patients.


Asunto(s)
Ejercicio Físico , Insuficiencia Cardíaca , Músculo Esquelético , Volumen Sistólico , Humanos , Masculino , Femenino , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Anciano , Músculo Esquelético/irrigación sanguínea , Ejercicio Físico/fisiología , Persona de Mediana Edad , Fentolamina/farmacología , Flujo Sanguíneo Regional , Fenilefrina/farmacología , Consumo de Oxígeno , Antagonistas Adrenérgicos alfa/farmacología , Pierna/irrigación sanguínea
4.
Artículo en Inglés | MEDLINE | ID: mdl-39120468

RESUMEN

Peripheral microvascular dysfunction has been documented in patients with heart failure with preserved ejection fraction (HFpEF), which may be related to elevated levels of inflammation and oxidative stress. Unfortunately, few strategies have been identified to effectively ameliorate this disease-related derangement. Thus, using a parallel, double-blind, placebo-controlled design, this study evaluated the efficacy of 30-day atorvastatin administration (10mg QD) on lower limb microvascular reactivity, functional capacity, and biomarkers of inflammation and oxidative stress in patients with HFpEF (Statin: n=8, 76±6 yr; Placebo: n=8, 68±9 yr). The passive limb movement (PLM)-induced hyperemic response and 6-Minute Walk Test (6MWT) distance were evaluated to assess ambulatory muscle microvascular function and functional capacity, respectively. Circulating biomarkers were also measured to assess the contribution of changes in inflammation and redox balance to these outcomes. The total hyperemic response to PLM, assessed as leg blood flow area under-the-curve (LBFAUC), increased following the statin intervention (pre: 60 ± 68 mL; post: 164 ± 90 mL; P < 0.01), whereas these variables were unchanged in the placebo group (P=0.99). There were no significant differences in 6MWT distance following statin or placebo intervention. Malondialdehyde (MDA), a marker of lipid peroxidation, was significantly reduced following the statin intervention (pre: 0.68 ± 0.10; post: 0.51 ± 0.11; P < 0.01), while other circulating biomarkers were unchanged. Together, these data provide new evidence for the efficacy of low-dose statin administration to improve locomotor muscle microvascular reactivity in patients with HFpEF, which may be due, in part, to a diminution in oxidative stress.

5.
Cureus ; 16(7): e65117, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39171064

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common, complex syndrome associated with elevated morbidity and mortality. Patients with HFpEF have a high prevalence of comorbidities, including hypertension, diabetes mellitus, and obesity, which are closely related to the underlying mechanisms of the disease. Lifestyle modification with weight loss and physical activity can improve risk factors and functional outcomes in HFpEF. We sought to observe daily physical activity and determine whether utilizing an activity tracker can enhance functional status in HFpEF patients. METHODS: We performed a prospective analysis of 57 patients with HFpEF from 2021 to 2023 at a single academic medical center who utilized a Fitbit to record one year of daily step activity. The patients were evaluated in the ambulatory setting for an initial visit and subsequently at intervals of 3, 6, and 12 months to gather vitals, labs, physical exam, and functional measurements, including the Six-Minute Walk Test (6MWT) and Kansas City Cardiomyopathy Questionnaire-12 (KCCQ-12). Associations between variables were assessed using Pearson's r correlation using Stata 18.0. RESULTS:  Of the 49 patients who completed the study, the mean age was 68.1 ± 10.2 years, with 67% of patients identifying as female. The average BMI was 36.4 ± 8.6 kg/m2. Across each time interval, the median numbers of steps per day were 4,113 (2,517-6,520) (1-3 months), 4,583 (2,532-6,326) (4-6 months), and 3,957 (2,942-5,982) (7-12 months). There was no statistically significant variation in daily step count (p=0.06). We observed a statistically significant increase of 66 (6-200) feet in the 6MWT (p= 0.002) from baseline (1,175 (910-1,400)) to 12 months (1,321 (1,000-1,550)). The daily step count was highly correlated with the 6MWT across all time points (1-3 months: r= .70, p< .001; 4-6 months: r= .61, p< .001; 7-12 months: r= .69, p< .001). The total KCCQ-12 scores increased by 6.8 (-4.2-19.8) points (p=0.005) from baseline (60.1 (41.7-73.4)) to 12 months (69.8 (50-84.4)). Among the sub-categories of the questionnaire, we observed a positive correlation between physical limitation scores and daily step count (1-3 months: r= .47, p=.001; 4-6 months: r= .63, p< .001; 7-12 months: r= .56, p= .001). Of interest, one patient who was taking over 15,000 daily steps scored their physical limitation 10-20 points lower than those taking less than half the steps and had one of the lowest quality of life scores in the cohort, reflecting the subjective nature of heart failure (HF) symptoms. CONCLUSION: Fitbit technology offers a convenient means to monitor real-time physical activity in patients with HFpEF. Utilizing a Fitbit to record daily step activity enhances health-related quality of life in this population. In contrast to the improved average total KCCQ-12 score, we did not observe a clinically significant increase in the 6MWT over the course of the year. Our findings establish the utility of daily step count as a valuable surrogate for six-minute walk distance.

6.
J Appl Physiol (1985) ; 136(3): 525-534, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174372

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is associated with autonomic dysregulation, which may be related to baroreflex dysfunction. Thus, we tested the hypothesis that cardiac and peripheral vascular responses to baroreflex activation via lower-body negative pressure (LBNP; -10, -20, -30, -40 mmHg) would be diminished in patients with HFpEF (n = 10, 71 ± 7 yr) compared with healthy controls (CON, n = 9, 69 ± 5 yr). Changes in heart rate (HR), mean arterial pressure (MAP, Finapres), forearm blood flow (FBF, ultrasound Doppler), and thoracic impedance (Z) were determined. Mild levels of LBNP (-10 and -20 mmHg) were used to specifically assess the cardiopulmonary baroreflex, whereas responses across the greater levels of LBNP represented an integrated baroreflex response. LBNP significantly increased in HR in CON subjects at -30 and -40 mmHg (+3 ± 3 and +6 ± 5 beats/min, P < 0.01), but was unchanged in patients with HFpEF across all LBNP levels. LBNP provoked progressive peripheral vasoconstriction, as quantified by changes in forearm vascular conductance (FVC), in both groups. However, a marked (40%-60%) attenuation in FVC responses was observed in patients with HFpEF (-6 ± 8, -15 ± 6, -16 ± 5, and -19 ± 7 mL/min/mmHg at -10, -20, -30, and -40 mmHg, respectively) compared with controls (-15 ± 10, -22 ± 6, -25 ± 10, and -28 ± 10 mL/min/mmHg, P < 0.01). MAP was unchanged in both groups. Together, these data provide new evidence for impairments in cardiopulmonary baroreflex function and diminished cardiovascular responsiveness during hypovolemia in patients with HFpEF, which may be an important aspect of the disease-related changes in autonomic cardiovascular control in this patient group.NEW & NOTEWORTHY Data from the current study demonstrate diminished cardiovascular responsiveness during hypovolemia induced by incremental lower-body negative pressure in patients with heart failure with preserved ejection fraction (HFpEF). These diminished responses imply impaired cardiopulmonary baroreflex function and altered autonomic cardiovascular regulation which may represent an important aspect of HFpEF pathophysiology.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Hipovolemia , Barorreflejo , Volumen Sistólico , Arterias
7.
J Appl Physiol (1985) ; 136(4): 877-888, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385181

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is characterized by impaired vascular endothelial function that may be improved by hydroxy-methylglutaryl-CoA (HMG-CoA) reductase enzyme inhibition. Thus, using a parallel, double-blind, placebo-controlled design, this study evaluated the efficacy of 30-day atorvastatin administration (10 mg daily) on peripheral vascular function and biomarkers of inflammation and oxidative stress in 16 patients with HFpEF [Statin: n = 8, 74 ± 6 yr, ejection fraction (EF) 52-73%; Placebo: n = 8, 67 ± 9 yr, EF 56-72%]. Flow-mediated dilation (FMD) and sustained-stimulus FMD (SS-FMD) during handgrip (HG) exercise, reactive hyperemia (RH), and blood flow during HG exercise were evaluated to assess conduit vessel function, microvascular function, and exercising muscle blood flow, respectively. FMD improved following statin administration (pre, 3.33 ± 2.13%; post, 5.23 ± 1.35%; P < 0.01), but was unchanged in the placebo group. Likewise, SS-FMD, quantified using the slope of changes in brachial artery diameter in response to increases in shear rate, improved following statin administration (pre: 5.31e-5 ± 3.85e-5 mm/s-1; post: 8.54e-5 ± 4.98e-5 mm/s-1; P = 0.03), with no change in the placebo group. Reactive hyperemia and exercise hyperemia responses were unchanged in both statin and placebo groups. Statin administration decreased markers of lipid peroxidation (malondialdehyde, MDA) (pre, 0.652 ± 0.095; post, 0.501 ± 0.094; P = 0.04), whereas other inflammatory and oxidative stress biomarkers were unchanged. Together, these data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular function or exercising limb blood flow, in patients with HFpEF, which may be due in part to reductions in oxidative stress.NEW & NOTEWORTHY This is the first study to investigate the impact of statin administration on vascular function and exercise hyperemia in patients with heart failure with preserved ejection fraction (HFpEF). In support of our hypothesis, both conventional flow-mediated dilation (FMD) testing and brachial artery vasodilation in response to sustained elevations in shear rate during handgrip exercise increased significantly in patients with HFpEF following statin administration, beneficial effects that were accompanied by a decrease in biomarkers of oxidative damage. However, contrary to our hypothesis, reactive hyperemia and exercise hyperemia were unchanged in patients with HFpEF following statin therapy. These data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular reactivity or exercising muscle blood flow in patients with HFpEF, which may be due in part to reductions in oxidative stress.


Asunto(s)
Insuficiencia Cardíaca , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hiperemia , Humanos , Biomarcadores , Velocidad del Flujo Sanguíneo/fisiología , Arteria Braquial/fisiología , Endotelio Vascular/fisiología , Fuerza de la Mano/fisiología , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperemia/tratamiento farmacológico , Flujo Sanguíneo Regional/fisiología , Volumen Sistólico/fisiología , Vasodilatación/fisiología , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA