Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 573(7773): 214-219, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462770

RESUMEN

The cranial morphology of the earliest known hominins in the genus Australopithecus remains unclear. The oldest species in this genus (Australopithecus anamensis, specimens of which have been dated to 4.2-3.9 million years ago) is known primarily from jaws and teeth, whereas younger species (dated to 3.5-2.0 million years ago) are typically represented by multiple skulls. Here we describe a nearly complete hominin cranium from Woranso-Mille (Ethiopia) that we date to 3.8 million years ago. We assign this cranium to A. anamensis on the basis of the taxonomically and phylogenetically informative morphology of the canine, maxilla and temporal bone. This specimen thus provides the first glimpse of the entire craniofacial morphology of the earliest known members of the genus Australopithecus. We further demonstrate that A. anamensis and Australopithecus afarensis differ more than previously recognized and that these two species overlapped for at least 100,000 years-contradicting the widely accepted hypothesis of anagenesis.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Hominidae/clasificación , Cráneo/anatomía & histología , Animales , Diente Canino/anatomía & histología , Etiopía , Cara/anatomía & histología , Maxilar/anatomía & histología , Especificidad de la Especie , Hueso Temporal/anatomía & histología , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 119(49): e2208772119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459637

RESUMEN

Trabecular bone-the spongy bone inside marrow cavities-adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.


Asunto(s)
Hueso Esponjoso , Primates , Adulto , Animales , Humanos , Neurogénesis , Fósiles , Tamaño Corporal
3.
J Anat ; 241(1): 67-81, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35178713

RESUMEN

Bone structure dynamically adapts to its mechanical environment throughout ontogeny by altering the structure of trabecular bone, the three-dimensional mesh-like structure found underneath joint surfaces. Trabecular structure, then, can provide a record of variation in loading directions and magnitude; and in ontogenetic samples, it can potentially be used to track developmental shifts in limb posture. We aim to broaden the analysis of trabecular bone ontogeny by incorporating interactions between ontogenetic variation in locomotor repertoire, neuromuscular maturation, and life history. We examine the associations between these variables and age-related variation in trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata). We used high-resolution micro-computed tomography scanning to image the calcaneus in a cross-sectional sample of 34 juvenile M. fuscata aged between 0 and 7 years old at the Primate Research Institute, Japan. We calculated whole bone averages of standard trabecular properties and generated whole-bone morphometric maps of bone volume fraction and Young's modulus. Trabecular structure becomes increasingly heterogeneous in older individuals. Bone volume fraction (BV/total volume [TV]) decreases during the first month of life and increases afterward, coinciding with the onset of independent locomotion in M. fuscata. At birth, primary Young's modulus is oriented orthogonal to the ossification center, but after locomotor onset bone structure becomes stiffest in the direction of joint surfaces and muscle attachments. Age-related variation in bone volume fraction is best predicted by an interaction between the estimated percentage of adult brain size, body mass, and locomotor onset. To explain our findings, we propose a model where interactions between age-related increases in body weight and maturation of the neuromuscular system alter the loading environment of the calcaneus, to which the internal trabecular structure dynamically adapts. This model cannot be directly tested based on our cross-sectional data. However, confirmation of the model by longitudinal experiments and in multiple species would show that trabecular structure can be used both to infer behavior from fossil morphology and serve as a valuable proxy for neuromuscular maturation and life history events like locomotor onset and the achievement of an adult-like gait. This approach could significantly expand our knowledge of the biology and behavior of fossil species.


Asunto(s)
Calcáneo , Animales , Calcáneo/anatomía & histología , Calcáneo/diagnóstico por imagen , Estudios Transversales , Crecimiento y Desarrollo , Macaca , Macaca fuscata , Microtomografía por Rayos X
4.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164252

RESUMEN

Solvents that stabilize protein structures can improve and expand their biochemical applications, particularly with the growing interest in biocatalytic-based processes. Aiming to select novel solvents for protein stabilization, we explored the effect of alkylammonium nitrate protic ionic liquids (PILs)-water mixtures with increasing cation alkyl chain length on lysozyme conformational stability. Four PILs were studied, that is, ethylammonium nitrate (EAN), butylammonium nitrate (BAN), hexylammonium nitrate (HAN), and octylammonium nitrate (OAN). The surface tension, viscosity, and density of PIL-water mixtures at low to high concentrations were firstly determined, which showed that an increasing cation alkyl chain length caused a decrease in the surface tension and density as well as an increase in viscosity for all PIL solutions. Small-angle X-ray scattering (SAXS) was used to investigate the liquid nanostructure of the PIL solutions, as well as the overall size, conformational flexibility and changes to lysozyme structure. The concentrated PILs with longer alkyl chain lengths, i.e., over 10 mol% butyl-, 5 mol% hexyl- and 1 mol% octylammonium cations, possessed liquid nanostructures. This detrimentally interfered with solvent subtraction, and the more structured PIL solutions prevented quantitative SAXS analysis of lysozyme structure. The radius of gyration (Rg) of lysozyme in the less structured aqueous PIL solutions showed little change with up to 10 mol% of PIL. Kratky plots, SREFLEX models, and FTIR data showed that the protein conformation was maintained at a low PIL concentration of 1 mol% and lower when compared with the buffer solution. However, 50 mol% EAN and 5 mol% HAN significantly increased the Rg of lysozyme, indicating unfolding and aggregation of lysozyme. The hydrophobic interaction and liquid nanostructure resulting from the increased cation alkyl chain length in HAN likely becomes critical. The impact of HAN and OAN, particularly at high concentrations, on lysozyme structure was further revealed by FTIR. This work highlights the negative effect of a long alkyl chain length and high concentration of PILs on lysozyme structural stability.


Asunto(s)
Líquidos Iónicos/química , Muramidasa/química , Cationes/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
J Hum Evol ; 153: 102956, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33711722

RESUMEN

Fossiliferous deposits at Woranso-Mille span the period when Australopithecus anamensis gave rise to Australopithecus afarensis (3.8-3.6 Ma) and encompass the core of the A. afarensis range (ca. 3.5-3.2 Ma). Within the latter period, fossils described to date include the intriguing but taxonomically unattributed Burtele foot, dentognathic fossils attributed to Australopithecus deyiremeda, and one specimen securely attributed to A. afarensis (the Nefuraytu mandible). These fossils suggest that at least one additional hominin lineage lived alongside A. afarensis in the Afar Depression. Here we describe a collection of hominin fossils from a new locality in the Leado Dido'a area of Woranso-Mille (LDD-VP-1). The strata in this area are correlated to the same chron as those in the Burtele area (C2An.3n; 3.59-3.33 Ma), and similar in age to the Maka Sands and the Basal through lower Sidi Hakoma Members of the Hadar Formation. We attribute all but one of the LDD hominin specimens to A. afarensis, based on diagnostic morphology of the mandible, maxilla, canines, and premolars. The LDD specimens generally fall within the range of variation previously documented for A. afarensis but increase the frequency of some rare morphological variants. However, one isolated M3 is extremely small, and its taxonomic affinity is currently unknown. The new observations support previous work on temporal trends in A. afarensis and demonstrate that the large range of variation accepted for this species is present even within a limited spatiotemporal range. The value added with this sample lies in its contribution to controlling for spatiotemporal differences among site samples in the A. afarensis hypodigm and its contemporaneity with non-A. afarensis specimens at Woranso-Mille.


Asunto(s)
Fósiles , Hominidae , Animales , Etiopía , Hominidae/anatomía & histología , Mandíbula/anatomía & histología , Maxilar/anatomía & histología , Diente/anatomía & histología
6.
J Hum Evol ; 161: 103093, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34749003

RESUMEN

Neanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H. sapiens (Upper Paleolithic and Holocene hunter-gatherers, agriculturalists, and postindustrial group) along with the Clark Howell talus (Omo, Ethiopia). Variation in external talar structures was assessed through geometric morphometric methods, while bone volume fraction and degree of anisotropy were quantified in a subsample (n = 45). Finally, covariation between point clouds of site-specific trabecular variables and surface landmark coordinates was assessed. Our results show that although Neanderthal talar external and internal morphologies were distinct from those of H. sapiens groups, shape did not significantly covary with either bone volume fraction or degree of anisotropy, suggesting limited covariation between external and internal talar structures. Neanderthal external talar morphology reflects ancestral retentions, along with various adaptations to high levels of mobility correlated to their presumably unshod hunter-gatherer lifestyle. This pairs with their high site-specific trabecular bone volume fraction and anisotropy, suggesting intense and consistently oriented locomotor loading, respectively. Relative to H.sapiens, Neanderthals exhibit differences in the talocrural joint that are potentially attributable to cultural and locomotor behavior dissimilarity, a talonavicular joint that mixes ancestral and functional traits, and a derived subtalar joint that suggests a predisposition for a pronated foot during stance phase. Overall, Neanderthal talar variation is attributable to mobility strategy and phylogenesis, while H. sapiens talar variation results from the same factors plus footwear. Our results suggest that greater Neanderthal body mass and/or higher mechanical stress uniquely led to their habitually pronated foot posture.


Asunto(s)
Hombre de Neandertal , Astrágalo , Animales , Fósiles , Humanos , Filogenia , Postura , Estrés Mecánico , Astrágalo/anatomía & histología
7.
Biomacromolecules ; 22(2): 612-619, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33337863

RESUMEN

Poly(ethylene glycol) (PEG) is well known to endow nanoparticles (NPs) with low-fouling and stealth-like properties that can reduce immune system clearance in vivo, making PEG-based NPs (particularly sub-100 nm) of interest for diverse biomedical applications. However, the preparation of sub-100 nm PEG NPs with controllable size and morphology is challenging. Herein, we report a strategy based on the noncovalent coordination between PEG-polyphenolic ligands (PEG-gallol) and transition metal ions using a water-in-oil microemulsion phase to synthesize sub-100 nm PEG NPs with tunable size and morphology. The metal-phenolic coordination drives the self-assembly of the PEG-gallol/metal NPs: complexation between MnII and PEG-gallol within the microemulsions yields a series of metal-stabilized PEG NPs, including 30-50 nm solid and hollow NPs, depending on the MnII/gallol feed ratio. Variations in size and morphology are attributed to the changes in hydrophobicity of the PEG-gallol/MnII complexes at varying MnII/gallol ratios based on contact angle measurements. Small-angle X-ray scattering analysis, which is used to monitor the particle size and intermolecular interactions during NP evolution, reveals that ionic interactions are the dominant driving force in the formation of the PEG-gallol/MnII NPs. pH and cytotoxicity studies, and the low-fouling properties of the PEG-gallol/MnII NPs confirm their high biocompatibility and functionality, suggesting that PEG polyphenol-metal NPs are promising systems for biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Polietilenglicoles
8.
Nature ; 521(7553): 483-8, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26017448

RESUMEN

Middle Pliocene hominin species diversity has been a subject of debate over the past two decades, particularly after the naming of Australopithecus bahrelghazali and Kenyanthropus platyops in addition to the well-known species Australopithecus afarensis. Further analyses continue to support the proposal that several hominin species co-existed during this time period. Here we recognize a new hominin species (Australopithecus deyiremeda sp. nov.) from 3.3-3.5-million-year-old deposits in the Woranso-Mille study area, central Afar, Ethiopia. The new species from Woranso-Mille shows that there were at least two contemporaneous hominin species living in the Afar region of Ethiopia between 3.3 and 3.5 million years ago, and further confirms early hominin taxonomic diversity in eastern Africa during the Middle Pliocene epoch. The morphology of Au. deyiremeda also reinforces concerns related to dentognathic (that is, jaws and teeth) homoplasy in Plio-Pleistocene hominins, and shows that some dentognathic features traditionally associated with Paranthropus and Homo appeared in the fossil record earlier than previously thought.


Asunto(s)
Biodiversidad , Fósiles , Hominidae/anatomía & histología , Hominidae/clasificación , Animales , Etiopía , Mandíbula/anatomía & histología , Filogenia , Especificidad de la Especie , Diente/anatomía & histología
9.
Am J Phys Anthropol ; 174(3): 434-450, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33244746

RESUMEN

OBJECTIVES: Variation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities. MATERIALS AND METHODS: We compare trabecular and cortical bone properties using peripheral quantitative computed tomography scans of the tibia between groups of 83 male athletes (running, hockey, swimming, cricket) and sedentary controls using Bayesian multilevel models. We quantify midshaft cortical bone rigidity and area (J, CA), midshaft shape index (Imax/Imin), and mean trabecular bone mineral density (BMD) in the distal tibia. RESULTS: All groups show unique combinations of biomechanical properties. Cortical bone rigidity is high in sports that involve impact loading (cricket, running, hockey) and low in nonimpact loaded swimmers and controls. Runners have more anteroposteriorly elliptical midshafts compared to other groups. Interestingly, all athletes have greater trabecular BMD compared to controls, but do not differ credibly among each other. DISCUSSION: Results suggest that cortical midshaft hypertrophy is associated with impact loading while trabecular BMD is positively associated with both impact and nonimpact loading. Midshaft shape is associated with directionality of loading. Individuals from the different categories overlap substantially, but group means differ credibly, suggesting that nuanced group-level inferences of habitual behavior are possible when combinations of trabecular and cortical bone are analyzed.


Asunto(s)
Hueso Esponjoso/fisiología , Hueso Cortical/fisiología , Deportes/fisiología , Soporte de Peso/fisiología , Adulto , Antropología Física , Atletas , Teorema de Bayes , Hueso Esponjoso/diagnóstico por imagen , Hueso Cortical/diagnóstico por imagen , Humanos , Masculino , Tibia/diagnóstico por imagen , Tibia/fisiología , Adulto Joven
10.
Am J Phys Anthropol ; 174(4): 822-831, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33244765

RESUMEN

OBJECTIVES: Variation in human trabecular bone morphology can be linked to habitual behavior, but it is difficult to investigate in vivo due to the radiation required at high resolution. Consequently, functional interpretations of trabecular morphology remain inferential. Here we introduce a method to link low- and high-resolution CT data from dry and fresh bone, enabling bone functional adaptation to be studied in vivo and results compared to the fossil and archaeological record. MATERIALS AND METHODS: We examine 51 human dry bone distal tibiae from Nile Valley and UK and two pig tibiae containing soft tissues. We compare low-resolution peripheral quantitative computed tomography (pQCT) parameters and high-resolution micro CT (µCT) in homologous single slices at 4% bone length and compare results to our novel Bone Ratio Predictor (BRP) method. RESULTS: Regression slopes between linear attenuation coefficients of low-resolution pQCT images and bone area/total area (BA/TA) of high-resolution µCT scans differ substantially between geographical subsamples, presumably due to diagenesis. BRP accurately predicts BA/TA (R2 = .97) and eliminates the geographic clustering. BRP accurately estimates BA/TA in pigs containing soft tissues (R2 = 0.98) without requiring knowledge of true density or phantom calibration of the scans. DISCUSSION: BRP allows automated comparison of image data from different image modalities (pQCT, µCT) using different energy settings, in archeological bone and wet specimens. The method enables low-resolution data generated in vivo to be compared with the fossil and archaeological record. Such experimental approaches would substantially improve behavioral inferences based on trabecular bone microstructure.


Asunto(s)
Hueso Esponjoso/diagnóstico por imagen , Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adaptación Fisiológica/fisiología , Adulto , Anatomía Transversal , Animales , Arqueología , Femenino , Humanos , Masculino , Fantasmas de Imagen , Porcinos , Microtomografía por Rayos X/métodos
11.
Am J Hum Biol ; 33(2): e23468, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32790125

RESUMEN

OBJECTIVES: The objective of this study is to demonstrate a new method for analyzing trabecular bone volume fraction and degree of anisotropy in three dimensions. METHODS: We use a combination of automatic mesh registration, point-cloud correspondence registration, and P-value corrected univariate statistical tests to compare bone volume fraction and degree of anisotropy on a point by point basis across the entire calcaneus of two human groups with different subsistence strategies. RESULTS: We found that the patterns of high and low bone volume fraction and degree of anisotropy distribution between the Black Earth (hunter-gatherers) and Norris Farms (mixed-strategy agriculturalists) are very similar, but differ in magnitude. The hunter-gatherers exhibit higher levels of bone volume fraction and less anisotropic trabecular bone organization. Additionally, patterns of bone volume fraction and degree of anisotropy in the calcaneus correspond well with biomechanical expectations of relative forces experienced during walking and running. CONCLUSIONS: We conclude that comparing site-specific, localized differences in trabecular bone variables such as bone volume fraction and degree of anisotropy in three-dimensions is a powerful analytical tool. This method makes it possible to determine where similarities and differences between groups are located within the whole skeletal element of interest. The visualization of multiple variables also provides a way for researchers to see how the trabecular bone variables interact within the morphology, and allows for a more nuanced understanding of how they relate to one another and the broader mechanical environment.


Asunto(s)
Antropometría/métodos , Calcáneo/fisiología , Hueso Esponjoso/fisiología , Estilo de Vida , Fenotipo , Agricultura , Arqueología , Humanos , Illinois
12.
Dev Dyn ; 249(4): 573-585, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31736206

RESUMEN

BACKGROUND: Given the need for descriptive and increasingly mechanistic morphological analyses, contrast-enhanced microcomputed tomography (microCT) represents perhaps the best method for visualizing 3D biological soft tissues in situ. Although staining protocols using phosphotungstic acid (PTA) have been published with beautiful visualizations of soft tissue structures, these protocols are often aimed at highly specific research questions and are applicable to a limited set of model organisms, specimen ages, or tissue types. We provide detailed protocols for micro-level visualization of soft tissue structures in mice at several embryonic and early postnatal ages using PTA-enhanced microCT. RESULTS: Our protocols produce microCT scans that enable visualization and quantitative analyses of whole organisms, individual tissues, and organ systems while preserving 3D morphology and relationships with surrounding structures, with minimal soft tissue shrinkage. Of particular note, both internal and external features of the murine heart, lungs, and liver, as well as embryonic cartilage, are captured at high resolution. CONCLUSION: These protocols have broad applicability to mouse models for a variety of diseases and conditions. Minor experimentation in the staining duration can expand this protocol to additional age groups, permitting ontogenetic studies of internal organs and soft tissue structures within their 3D in situ position.


Asunto(s)
Ácido Fosfotúngstico/química , Microtomografía por Rayos X/métodos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Cartílago/diagnóstico por imagen , Cartílago/embriología , Femenino , Imagenología Tridimensional , Ratones , Embarazo
13.
J Anat ; 236(3): 474-492, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31725189

RESUMEN

Trabecular bone structure in adulthood is a product of a process of modelling during ontogeny and remodelling throughout life. Insight into ontogeny is essential to understand the functional significance of trabecular bone structural variation observed in adults. The complex shape and loading of the human calcaneus provides a natural experiment to test the relationship between trabecular morphology and locomotor development. We investigated the relationship between calcaneal trabecular bone structure and predicted changes in loading related to development of gait and body size in growing children. We sampled three main trabecular regions of the calcanei using micro-computed tomography scans of 35 individuals aged between neonate to adult from the Norris Farms #36 site (1300 AD, USA) and from Cambridge (1200-1500 AD, UK). Trabecular properties were calculated in volumes of interest placed beneath the calcaneocuboid joint, plantar ligaments, and posterior talar facet. At birth, thin trabecular struts are arranged in a dense and relatively isotropic structure. Bone volume fraction strongly decreases in the first year of life, whereas anisotropy and mean trabecular thickness increase. Dorsal compressive trabecular bands appear around the onset of bipedal walking, although plantar tensile bands develop prior to predicted propulsive toe-off. Bone volume fraction and anisotropy increase until the age of 8, when gait has largely matured. Connectivity density gradually reduces, whereas trabeculae gradually thicken from birth until adulthood. This study demonstrates that three different regions of the calcaneus develop into distinct adult morphologies through varying developmental trajectories. These results are similar to previous reports of ontogeny in human long bones and are suggestive of a relationship between the mechanical environment and trabecular bone architecture in the human calcaneus during growth. However, controlled experiments combined with more detailed biomechanical models of gait maturation are necessary to establish skeletal markers linking growth to loading. This has the potential to be a novel source of information for understanding loading levels, activity patterns, and perhaps life history in the fossil record.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Marcha/fisiología , Caminata/fisiología , Adolescente , Fenómenos Biomecánicos/fisiología , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/fisiología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microtomografía por Rayos X , Adulto Joven
14.
J Hum Evol ; 142: 102747, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32240884

RESUMEN

The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets. Distinctive suites of features are consistently present in all fossil hominins, despite the presence of substantial interspecific variation, suggesting a potential connection of these suites to bipedal gait. A modern human-like condition evolved in navicular and lateral malleolar facets early in the hominin lineage compared with other facets, which demonstrate more complex morphological variation within Homininae. Interestingly, navicular facet morphology of Australopithecus afarensis is derived in the direction of Homo, whereas more recent hominin species such as Australopithecus africanus and Australopithecus sediba retain more primitive states in this facet. Combining the navicular facet with the trochlea and the posterior calcaneal facet as a functional suite, however, distinguishes Australopithecus from Homo in that the medial longitudinal arch had not fully developed in the former. Our results suggest that a more everted foot and stiffer medial midtarsal region are adaptations that coincide with the emergence of bipedalism, whereas a high medial longitudinal arch emerges later in time, within Homo. This study provides novel insights into the emergence of talar morphological traits linked to bipedalism and its transition from a facultative to an obligate condition.


Asunto(s)
Evolución Biológica , Hominidae/anatomía & histología , Hominidae/fisiología , Locomoción , Astrágalo/anatomía & histología , Animales , Femenino , Fósiles/anatomía & histología , Gorilla gorilla/anatomía & histología , Gorilla gorilla/fisiología , Humanos , Masculino , Hombre de Neandertal/anatomía & histología , Hombre de Neandertal/fisiología , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología
15.
Am J Phys Anthropol ; 171(3): 456-469, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31825095

RESUMEN

OBJECTIVES: The primate talus is known to have a shape that varies according to differences in locomotion and substrate use. While the modern human talus is morphologically specialized for bipedal walking, relatively little is known on how its morphology varies in relation to cultural and environmental differences across time. Here we compare tali of modern human populations with different subsistence economies and lifestyles to explore how cultural practices and environmental factors influence external talar shape. MATERIALS AND METHODS: The sample consists of digital models of 142 tali from 11 archaeological and post-industrial modern human groups. Talar morphology was investigated through 3D (semi)landmark based geometric morphometric methods. RESULTS: Our results show distinct differences between highly mobile hunter-gatherers and more sedentary groups belonging to a mixed post-agricultural/industrial background. Hunter-gatherers exhibit a more "flexible" talar shape, everted posture, and a more robust and medially oriented talar neck/head, which we interpret as reflecting long-distance walking strictly performed barefoot, or wearing minimalistic footwear, along uneven ground. The talus of the post-industrial population exhibits a "stable" profile, neutral posture, and a less robust and orthogonally oriented talar neck/head, which we interpret as a consequence of sedentary lifestyle and use of stiff footwear. DISCUSSION: We suggest that talar morphological variation is related to the adoption of constraining footwear in post-industrial society, which reduces ankle range of motion. This contrasts with hunter-gatherers, where talar shape shows a more flexible profile, likely resulting from a lack of footwear while traversing uneven terrain. We conclude that modern human tali vary with differences in locomotor and cultural behavior.


Asunto(s)
Conducta Alimentaria , Actividad Motora , Zapatos , Astrágalo/anatomía & histología , Adulto , África , Anciano , Arqueología , Europa (Continente) , Femenino , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Masculino , Persona de Mediana Edad , América del Norte , Zapatos/historia , Adulto Joven
16.
J Biol Chem ; 293(15): 5464-5477, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483196

RESUMEN

Programmed cell death or apoptosis is a critical mechanism for the controlled removal of damaged or infected cells, and proteins of the Bcl-2 family are important arbiters of this process. Viruses have been shown to encode functional and structural homologs of Bcl-2 to counter premature host-cell apoptosis and ensure viral proliferation or survival. Grouper iridovirus (GIV) is a large DNA virus belonging to the Iridoviridae family and harbors GIV66, a putative Bcl-2-like protein and mitochondrially localized apoptosis inhibitor. However, the molecular and structural basis of GIV66-mediated apoptosis inhibition is currently not understood. To gain insight into GIV66's mechanism of action, we systematically evaluated its ability to bind peptides spanning the BH3 domain of pro-apoptotic Bcl-2 family members. Our results revealed that GIV66 harbors an unusually high level of specificity for pro-apoptotic Bcl-2 and displays affinity only for Bcl-2-like 11 (Bcl2L11 or Bim). Using crystal structures of both apo-GIV66 and GIV66 bound to the BH3 domain from Bim, we unexpectedly found that GIV66 forms dimers via an interface that results in occluded access to the canonical Bcl-2 ligand-binding groove, which breaks apart upon Bim binding. This observation suggests that GIV66 dimerization may affect GIV66's ability to bind host pro-death Bcl-2 proteins and enables highly targeted virus-directed suppression of host apoptosis signaling. Our findings provide a mechanistic understanding for the potent anti-apoptotic activity of GIV66 by identifying it as the first single-specificity, pro-survival Bcl-2 protein and identifying a pivotal role of Bim in GIV-mediated inhibition of apoptosis.


Asunto(s)
Proteína 11 Similar a Bcl2 , Iridovirus , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Virales , Proteína 11 Similar a Bcl2/química , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Humanos , Iridovirus/química , Iridovirus/genética , Iridovirus/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
Planta ; 250(6): 1819-1832, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31463558

RESUMEN

MAIN CONCLUSION: During development, cellulose microfibrils in collenchyma walls become increasingly longitudinal, as determined by small-angle X-ray scattering, despite the walls maintaining a fine structure indicative of a crossed-polylamellate structure. Collenchyma cells have thickened primary cell walls and provide mechanical support during plant growth. During their development, these cells elongate and their walls thicken considerably. We used microscopy and synchrotron small-angle X-ray scattering to study changes in the orientations of cellulose microfibrils that occur during development in the walls of collenchyma cells present in peripheral strands in celery (Apium graveolens) petioles. Transmission electron microscopy showed that the walls consisted of many lamellae (polylamellate), with lamellae containing longitudinally oriented cellulose microfibrils alternating with microfibrils oriented at higher angles. The lamellae containing longitudinally oriented microfibrils predominated at later stages of development. Nevertheless, transmission electron microscopy of specially stained, oblique sections provided evidence that the cellulose microfibrils were ordered throughout development as crossed-polylamellate structures. These results are consistent with our synchrotron small-angle X-ray scattering results that showed the cellulose microfibrils become oriented increasingly longitudinally during development. Some passive reorientation of cellulose microfibrils may occur during development, but extensive reorientation throughout the wall would destroy ordered structures. Atomic force microscopy and field emission scanning electron microscopy were used to determine the orientations of newly deposited cellulose microfibrils. These were found to vary widely among different cells, which could be consistent with the formation of crossed-polylamellate structures. These newly deposited cellulose microfibrils are deposited in a layer of pectic polysaccharides that lies immediately outside the plasma membrane. Overall, our results show that during development of collenchyma walls, the cellulose microfibrils become increasingly longitudinal in orientation, yet organized, crossed-polylamellate structures are maintained.


Asunto(s)
Apium/crecimiento & desarrollo , Pared Celular/metabolismo , Celulosa/metabolismo , Microfibrillas/metabolismo , Apium/citología , Apium/metabolismo , Apium/ultraestructura , Pared Celular/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
J Hum Evol ; 132: 15-31, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31203845

RESUMEN

Mandibular morphology of Australopithecus afarensis is well known based on abundant fossil mandibles of adult individuals from multiple sites in Ethiopia (Hadar, Woranso-Mille, and Middle Awash) and Tanzania (Laetoli). However, there are only a few juvenile mandibles of the species known from these sites. Here, we describe two recently discovered Pliocene hominin juvenile mandibles from Woranso-Mille (KSD-VP-1/29 and MKM-VP-1/626), that have been radioisotopically dated to 3.6 million years ago. We assign these mandibles to Australopithecus afarensis based on their possession of mandibular morphological features considered as distinctive of the species. These specimens not only increase the sample size of juvenile mandibles of A. afarensis from poorly known time period, but also add new information on the degree of variability in juvenile mandibular morphology within the species. Their dentition samples the whole spectrum of size and shape variation in A. afarensis. Our analysis further indicates that symphyseal morphology of the Laetoli mandibles of early A. afarensis falls within the range of variation of mandibles of the species from Hadar, Woranso-Mille, and Middle Awash. Moreover, the fact that the new 3.6 million-year-old juvenile mandibles from Woranso-Mille have a more receeding symphysis than any of the juvenile and most adult mandibles of A. afarensis from the younger Hadar sequence lends support to the observed trend in symphyseal morphological change in the A. anamensis-A. afarensis chronospecies lineage.


Asunto(s)
Dentición , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Hominidae/clasificación , Mandíbula/anatomía & histología , Animales , Etiopía
19.
J Hum Evol ; 135: 102654, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31465989

RESUMEN

The human foot is highly derived relative to that of other hominoids and therefore a topic of intense research in paleoanthropology. While trabecular bone is thought to be highly plastic in response to habitual behavior, knowledge of how trabecular structure scale with body size is essential for making functional inferences from trabecular bone morphology. Trabecular bone properties scale with negative allometry in interspecific studies that includes a wide range of body size; however, intraspecific scaling patterns often differ from interspecific trends. In this paper we examine patterns of trabecular bone scaling in the calcaneus, talus, and first metatarsal of four human populations with different subsistence strategies and associated levels of terrestrial mobility. We report Bayesian linear regressions between the natural logarithms of femoral head diameter and five standard trabecular variables calculated in five spherical volumes of interest. We additionally report regressions on population-specific z-scores of femoral head diameter and trabecular variables as a way of placing the four populations on a common scale. Results show that with increasing body size there is no change in bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), a slight increase in trabecular spacing (Tb.Sp), and a sharp decrease in connectivity density (Conn.D). Degree of anisotropy was found to scale with positive allometry in the calcaneus, negative allometry in the talar trochlea, and shows no relationship with femoral head diameter in the talar and first metatarsal heads. These results show that scaling of the degree of anisotropy can vary substantially within and between bones. Degree of anisotropy is often used as a proxy for directionality in joint loading when interpreting variation in trabecular structures of fossils and extant primates. Body size should therefore be an important consideration when trabecular bone structure is used to interpret function from fossil morphology.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Pie/anatomía & histología , Estilo de Vida , Arqueología , Inglaterra , Humanos , Illinois , Sudán
20.
Soft Matter ; 15(37): 7501-7508, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31528955

RESUMEN

In recent years, lipopeptides have received attention for their enhanced antimicrobial activity, especially against multi-drug resistant (MDR) pathogens. We have previously reported that the bacterial soil extracted, novel cyclic lipopeptide, battacin, and its synthetic analogues have enhanced antimicrobial activity against various Gram negative, Gram positive and fungal pathogens. In particular, the modification of the hydrophobic fatty acid chain and molecular structure has improved its activity. We have used small angle X-ray scattering (SAXS) and circular dichroism (CD) to characterise the low resolution structure of battacin lipopeptides containing covalently bonded fatty acid chains and the one without it. In the absence of fatty acids or with short fatty acid chain, the peptides adopted an extended random coil structure that is best described barbell-like shape, while fatty acids that are sufficiently long induced an aggregation into a ∼4.0 nm diameter core shell sphere. While the kinked structure found within this barbell shape may have a role in antimicrobial activities, the self-assembly of the battacin analogue with the longest fatty acid chain may have a correlation to the declined antibacterial activities.


Asunto(s)
Antiinfecciosos/química , Proteínas Bacterianas/química , Ácidos Grasos/química , Lipopéptidos/química , Péptidos Cíclicos/química , Dicroismo Circular , Paenibacillus/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA