Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32621799

RESUMEN

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Asunto(s)
Cicatriz/metabolismo , Colágeno Tipo V/deficiencia , Colágeno Tipo V/metabolismo , Lesiones Cardíacas/metabolismo , Contracción Miocárdica/genética , Miofibroblastos/metabolismo , Animales , Cicatriz/genética , Cicatriz/fisiopatología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/genética , Integrinas/antagonistas & inhibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacología , Masculino , Mecanotransducción Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica/instrumentación , Microscopía Electrónica de Transmisión , Contracción Miocárdica/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/patología , Miofibroblastos/ultraestructura , Análisis de Componente Principal , Proteómica , RNA-Seq , Análisis de la Célula Individual
2.
Physiol Genomics ; 56(9): 621-633, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949617

RESUMEN

Type 2 diabetes (T2D) is a common metabolic disease due to insufficient insulin secretion by pancreatic ß-cells in the context of insulin resistance. Islet molecular pathology reveals a role for protein misfolding in ß-cell dysfunction and loss with islet amyloid derived from islet amyloid polypeptide (IAPP), a protein coexpressed and cosecreted with insulin. The most toxic form of misfolded IAPP is intracellular membrane disruptive toxic oligomers present in ß-cells in T2D and in ß-cells of mice transgenic for human IAPP (hIAPP). Prior work revealed a high degree of overlap of transcriptional changes in islets from T2D and prediabetic 9- to 10-wk-old mice transgenic for hIAPP with most changes being pro-survival adaptations and therefore of limited therapeutic guidance. Here, we investigated islets from hIAPP transgenic mice at an earlier age (6 wk) to screen for potential mediators of hIAPP toxicity that precede predominance of pro-survival signaling. We identified early suppression of cholesterol synthesis and trafficking along with aberrant intra-ß-cell cholesterol and lipid deposits and impaired cholesterol trafficking to cell membranes. These findings align with comparable lipid deposits present in ß-cells in T2D and increased vulnerability to develop T2D in individuals taking medications that suppress cholesterol synthesis.NEW & NOTEWORTHY ß-Cell failure in type 2 diabetes (T2D) is characterized by ß-cell misfolded protein stress due to the formation of toxic oligomers of islet amyloid polypeptide (IAPP). Most transcriptional changes in islets in T2D are pro-survival adaptations consistent with the slow progression of ß-cell loss. In the present study, investigation of the islet transcriptional signatures in a mouse model of T2D expressing human IAPP revealed decreased cholesterol synthesis and trafficking as a plausible early mediator of IAPP toxicity.


Asunto(s)
Colesterol , Diabetes Mellitus Tipo 2 , Homeostasis , Células Secretoras de Insulina , Polipéptido Amiloide de los Islotes Pancreáticos , Ratones Transgénicos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Colesterol/metabolismo , Ratones , Humanos , Masculino , Transducción de Señal
3.
J Am Chem Soc ; 144(18): 8115-8128, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35487219

RESUMEN

The family of isomeric H2C3O+• radical cations is of great interest for physical organic chemistry and chemistry occurring in extraterrestrial media. In this work, we have experimentally examined a unique synthetic route to the generation of H2C3O+• from the C2H2···CO intermolecular complex and also considered the relative stability and monomolecular transformations of the H2C3O+• isomers through high-level ab initio calculations. The structures, energetics, harmonic frequencies, hyperfine coupling constants, and isomerization pathways for several of the most important H2C3O+• isomers were calculated at the UCCSD(T) level of theory. The complementary FTIR and EPR studies in argon matrices at 5 K have demonstrated that the ionized C2H2···CO complex transforms into the E-HCCHCO+• isomer, and this latter species is supposed to be the key intermediate in further chemical transformations, providing a remarkable piece of evidence for kinetic control in low-temperature chemistry. Photolysis of this species at λ = 410-465 nm results in its transformation to the thermodynamically most stable H2CCCO+• isomer. Possible implications of the results and potentiality of the proposed synthetic strategy to the preparation of highly reactive organic radical cations are discussed.


Asunto(s)
Argón , Argón/química , Cationes/química , Isomerismo , Cinética , Fotólisis
4.
Inorg Chem ; 60(16): 12237-12246, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34351137

RESUMEN

To realize high-power performance, lithium-ion batteries require stable, environmentally benign, and economically viable noncarbonaceous anode materials capable of operating at high rates with low strain during charge-discharge. In this paper, we report the synthesis, crystal structure, and electrochemical properties of a new titanium-based member of the MPO4 phosphate series adopting the α-CrPO4 structure type. α-TiPO4 has been obtained by thermal decomposition of a novel hydrothermally prepared fluoride phosphate, NH4TiPO4F, at 600 °C under a hydrogen atmosphere. The crystal structure of α-TiPO4 is refined from powder X-ray diffraction data using a Rietveld method and verified by electron diffraction and high-resolution scanning transmission electron microscopy, whereas the chemical composition is confirmed by IR, energy-dispersive X-ray, electron paramagnetic resonance, and electron energy loss spectroscopies. Carbon-coated α-TiPO4/C demonstrates reversible electrochemical activity ascribed to the Ti3+/Ti2+ redox transition delivering 125 mAh g-1 specific capacity at C/10 in the 1.0-3.1 V versus Li+/Li potential range with an average potential of ∼1.5 V, exhibiting good rate capability and stable cycling with volume variation not exceeding 0.5%. Below 0.8 V, the material undergoes a conversion reaction, further revealing capacitive reversible electrochemical behavior with an average specific capacity of 270 mAh g-1 at 1C in the 0.7-2.9 V versus Li+/Li potential range. This work suggests a new synthesis route to metastable titanium-containing phosphates holding prospective to be used as negative electrode materials for metal-ion batteries.

5.
J Synchrotron Radiat ; 27(Pt 3): 625-632, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381762

RESUMEN

The unique diagnostic possibilities of X-ray diffraction, small X-ray scattering and phase-contrast imaging techniques applied with high-intensity coherent X-ray synchrotron and X-ray free-electron laser radiation can only be fully realized if a sufficient dynamic range and/or spatial resolution of the detector is available. In this work, it is demonstrated that the use of lithium fluoride (LiF) as a photoluminescence (PL) imaging detector allows measuring of an X-ray diffraction image with a dynamic range of ∼107 within the sub-micrometre spatial resolution. At the PETRA III facility, the diffraction pattern created behind a circular aperture with a diameter of 5 µm irradiated by a beam with a photon energy of 500 eV was recorded on a LiF crystal. In the diffraction pattern, the accumulated dose was varied from 1.7 × 105 J cm-3 in the central maximum to 2 × 10-2 J cm-3 in the 16th maximum of diffraction fringes. The period of the last fringe was measured with 0.8 µm width. The PL response of the LiF crystal being used as a detector on the irradiation dose of 500 eV photons was evaluated. For the particular model of laser-scanning confocal microscope Carl Zeiss LSM700, used for the readout of the PL signal, the calibration dependencies on the intensity of photopumping (excitation) radiation (λ = 488 nm) and the gain have been obtained.

6.
Inorg Chem ; 59(22): 16225-16237, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33137251

RESUMEN

A new monoclinic α-polymorph of the Na2FePO4F fluoride-phosphate has been directly synthesized via a hydrothermal method for application in metal-ion batteries. The crystal structure of the as-prepared α-Na2FePO4F studied with powder X-ray and neutron diffraction (P21/c, a = 13.6753(10) Å, b = 5.2503(2) Å, c = 13.7202(8) Å, ß = 120.230(4)°) demonstrates strong antisite disorder between the Na and Fe atoms. As revealed with DFT-based calculations, α-Na2FePO4F has low migration barriers for Na+ along the main pathway parallel to the b axis, and an additional diffusion bypass allowing the Na+ cations to go around the Na/Fe antisite defects. These results corroborate with the extremely high experimental Na-ion diffusion coefficient of (1-5)·10-11 cm2·s-1, which is 2 orders of magnitude higher than that for the orthorhombic ß-polymorph ((5-10)·10-13 cm2·s-1). Being tested as a cathode material in Na- and Li-ion battery cells, monoclinic α-Na2FePO4F exhibits a reversible specific capacity of 90 and 80 mAh g-1, respectively.

7.
Phys Chem Chem Phys ; 21(7): 3656-3661, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30406252

RESUMEN

We report an experimental and theoretical study on new noble-gas hydride complex HKrCCHCO2, which is the first known complex of a krypton hydride with carbon dioxide. This species was prepared by the annealing-induced H + Kr + CCHCO2 reaction in a krypton matrix, the CCHCO2 complexes being produced by UV photolysis of propiolic acid (HCCCOOH). The H-Kr stretching mode of the HKrCCHCO2 complex at 1316 cm-1 is blue-shifted by 74 cm-1 from the most intense H-Kr stretching band of HKrCCH monomer. The observed blue shift indicates the stabilization of the H-Kr bond upon complexation, which is characteristic of complexes of noble-gas hydrides. This spectral shift is slightly larger than that of the HKrCCHC2H2 complex (+60 cm-1) and significantly larger than that of the HXeCCHCO2 complex (+32 and +6 cm-1). On the basis of comparison with ab initio computations at the MP2 and CCSD(T) levels of theory, the experimentally observed absorption is assigned to the quasi-parallel configuration of the HKrCCHCO2 complex. The calculated complexation-induced spectral shift of the H-Kr stretching band (60.4 or 72.7 cm-1 from the harmonic calculations at the MP2 and CCSD(T) levels, respectively) agrees well with the experimental value.

8.
J Phys Chem A ; 122(1): 159-166, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29206459

RESUMEN

We report on the complex of a noble-gas hydride HXeOH with carbon monoxide. This species is prepared via the annealing-induced H + Xe + OH···CO reaction in a xenon matrix, the OH···CO complexes being produced by VUV photolysis of the H2O···CO complexes. The H-Xe stretching mode of the HXeOH···CO complex absorbs at 1590.3 cm-1 and it is blue-shifted by 12.7 cm-1 from the H-Xe stretching band of HXeOH monomer. The observed blue shift indicates the stabilization of the H-Xe bond upon complexation, which is characteristic of complexes of noble-gas hydrides. The HXeOH···CO species is the first complex of a noble-gas hydride with carbon monoxide and the second observed complex of HXeOH. On the basis of the MP2/aug-cc-pVTZ-PP calculations, the experimental complex is assigned to the structure, where the carbon atom of CO interacts with the oxygen atom of HXeOH.

9.
J Am Chem Soc ; 139(28): 9551-9557, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28625046

RESUMEN

Conformers of carboxyl radical (HOCO) have been studied by IR spectroscopy in argon and nitrogen matrices. In an argon matrix, only the lower-energy conformer trans-HOCO is observed, whereas both cis and trans conformers are found for deuterated carboxyl radical DOCO. In a nitrogen matrix, both conformers of HOCO and DOCO isotopologues can be prepared, indicating strong stabilization of the higher-energy cis conformer by a nitrogen matrix. Selective vibrational excitation promotes the trans-to-cis and cis-to-trans conversions of DOCO in an argon matrix and HOCO and DOCO in a nitrogen matrix, which is the first conformational photoswitching of an open-shell species. In a nitrogen matrix, the cis-to-trans and trans-to-cis conversions of HOCO is also found upon broadband IR light of the spectrometer, and the ratio of the quantum yields of these processes is about 3.3. The photoswitching peculiarities are in agreement with the available theoretical energy barriers. The higher-energy cis conformer decays to the lower-energy trans conformer via hydrogen-atom tunneling through the torsional barrier, which is also a unique observation for an open-shell species. The tunneling mechanism of the cis-to-trans switching is supported by the low-temperature limit of the reaction rate and by the H/D kinetic isotope effect. Our results suggest a large difference in the H/D kinetic isotope effects in nitrogen and argon matrices (∼5 and >100, respectively). The stabilizing effect on cis-DOCO by a nitrogen matrix (by 2 orders of magnitude versus an argon matrix) is much smaller than that on cis-HOCO (estimated to be >104).

10.
Chemphyschem ; 18(8): 949-958, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28112851

RESUMEN

We report on the experimental and theoretical infrared spectrum of the C2 H⋅⋅⋅CO2 complex. This complex was prepared by UV photolysis of propiolic acid (HC3 OOH) in argon and krypton matrices. The experimental bands of C2 H in the C2 H⋅⋅⋅CO2 complex are blue-shifted from those of the C2 H monomer. The calculations on the C2 H⋅⋅⋅CO2 structures were performed at the RMP2/aug-cc-pVTZ level. The relative stability of the complex structures was evaluated by using the RCCSD(T)/aug-cc-pVQZ level. To simulate the spectrum of the C2 H⋅⋅⋅CO2 complex, we developed the theoretical approach used earlier for the C2 H monomer. Based on the calculations, the main experimental bands of the C2 H⋅⋅⋅CO2 complex are assigned to the most stable parallel structure. Almost all the strong bands predicted by theory (with intensities >30 km mol-1 ) are observed in the experiment. To our knowledge, it is the first study of the effect of noncovalent interactions on vibronic transitions and the first report on an intermolecular complex of the C2 H radical.

11.
J Chem Phys ; 147(18): 184301, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141420

RESUMEN

We report on the preparation and vibrational characterization of the C2H3⋯CO2 complex, the first example of a stable intermolecular complex involving vinyl radicals. This complex was prepared in Ar and Kr matrices using UV photolysis of propiolic acid (HC3OOH) and subsequent thermal mobilization of H atoms. This preparation procedure provides vinyl radicals formed exclusively as a complex with CO2, without the presence of either CO2 or C2H3 monomers. The absorption bands corresponding to the ν5(C2H3), ν7(C2H3), ν8(C2H3), ν2(CO2), and ν3(CO2) modes of the C2H3⋯CO2 complex were detected experimentally. The calculations at the UCCSD(T)/L2a level of theory predict two structures of the C2H3⋯CO2 complex with Cs and C1 symmetries and interaction energies of -1.92 and -5.19 kJ mol-1. The harmonic vibrational frequencies of these structures were calculated at the same level of theory. The structural assignment of the experimental species is not straightforward because of rather small complexation-induced shifts and matrix-site splitting of the bands (for both complex and monomers). We conclude that the C1 structure is the most probable candidate for the experimental C2H3⋯CO2 complex based on the significant splitting of the bending vibration of CO2 and on the energetic and structural considerations.

12.
Phys Chem Chem Phys ; 19(1): 356-365, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27905600

RESUMEN

Vacuum ultraviolet (VUV, 130-170 nm) photochemistry of the H2OCO complex is studied by matrix-isolation infrared spectroscopy. The H2OCO complexes in Ne, Ar, Kr, and Xe matrices are generated by ultraviolet (UV, 193 and 250 nm) photolysis of formic acid (HCOOH). VUV photolysis of the H2OCO complexes is found to lead to the formation of the OHCO radical-molecule complexes and trans-HOCO radicals. It is shown that the matrix material, local matrix morphology, and possibly the H2OCO complex geometry strongly affect the VUV photolysis pathways. The intrinsic reactivity of the matrix-isolated OHCO complex resulting in the formation of trans-HOCO is directly demonstrated for the first time. This reaction occurs in Ar, Kr, and Xe matrices upon annealing above 25 K and may proceed over the barrier. The case of a Ne matrix is very special because the formation of trans-HOCO from the OHCO complex is observed even at the lowest experimental temperature (4.5 K), which is in sharp contrast to the other matrices. It follows that quantum tunneling is probably involved in this process in the Ne matrix at such a low temperature. Infrared light also promotes this reaction in the Ne matrix at 4.5 K, which is not the case in the other matrices. The last findings show the effect of the environment on the tunneling and infrared-induced rates of this fundamental chemical reaction.

13.
Phys Chem Chem Phys ; 17(45): 30648-58, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26524429

RESUMEN

The effect of X-ray irradiation on the isolated formic acid molecules (HCOOH) in solid noble gas matrices (Xe, Kr, Ar, and Ne) at very low temperatures (6 K) was first studied by FTIR spectroscopy. Carbon oxides (CO and CO2) and hydrocarboxyl radicals (HOCO) have been detected as the principal degradation products. The formation of HOCO radicals represents a primary dissociation channel for formic acid, which was not reported previously under UV photolysis in solids. This reaction can be explained by the involvement of the recombination-induced excited states, which are not populated in photolysis. The effects of the matrix and the absorbed dose on the product formation were studied in detail and possible mechanisms are discussed with particular attention to the difference between radiolysis and UV-photolysis of the matrix-isolated formic acid. The results obtained provide a new insight into the effects of high-energy impact on the simplest carboxylic acid with possible implications to the astrochemical problems, in particular, the prebiotic evolution in the interstellar medium.

14.
J Phys Chem A ; 119(11): 2578-86, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25469518

RESUMEN

The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

15.
J Chem Phys ; 139(12): 124315, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24089775

RESUMEN

The photo-induced transformations of HXeSH and HXeH under the action of IR and visible light have been studied using FTIR spectroscopy. The xenon hydrides were produced by the X-ray induced decomposition of H2S and its isotopomers in a solid xenon matrix at 7.5 K followed by thermal annealing at the temperatures up to 45 K. Selective IR-induced photodissociation of HXeSH at 3500-2500 cm(-1) was attributed to vibrational excitation of the 3ν(H-Xe) mode. The IR-photodecomposed HXeSH molecules can be almost quantitative recovered below 22 K with very small effective activation energy (~20 meV) indicating local character of this process. Analysis of the photoactivity of xenon hydrides in the visible region revealed previously unknown absorptions for HXeSH (in the region of 400-700 nm) and HXeH (above 700 nm). The decomposition of HXeH occurs due to both direct photolysis and reactions of "hot" H atoms produced from the photodissociation of HXeSH. The efficiency of thermal recovery for both xenon hydrides after photolysis with visible light was found to be dependent on the excitation wavelength, which was explained by the effect of photon energy on spatial distribution of the dissociation fragments.

16.
Membranes (Basel) ; 13(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36837658

RESUMEN

Redox flow batteries (RFBs) are a prospective energy storage platform to mitigate the discrepancy between barely adjustable energy production and fluctuating demand. The energy density and affordability of RFBs can be improved significantly through the transition from aqueous systems to non-aqueous (NAq) due to their wider electrochemical stability window and better solubility of active species. However, the NAqRFBs suffer from a lack of effective membranes with high ionic conductivity (IC), selectivity (low permeability), and stability. Here, we for the first time thoroughly analyse the impact of tape-casting solvents (dimethylformamide-DMF; dimethylsulfoxide-DMSO; N-methyl-2-pyrrolidone-NMP) on the properties of the composite Li-conductive membrane (Li1.3Al0.3Ti1.7(PO4)3 filler within poly(vinylidene fluoride) binder-LATP+PVDF). We show that the prolonged exposure of LATP to the studied solvents causes slight morphological, elemental, and intrastructural changes, dropping ceramic's IC from 3.1 to 1.6-1.9 ∙ 10-4 S cm-1. Depending on the solvent, the final composite membranes exhibit IC of 1.1-1.7 ∙ 10-4 S cm-1 (comparable with solvent-treated ceramics) along with correlating permeability coefficients of 2.7-3.1 ∙ 10-7 cm2 min-1. We expect this study to complement the understanding of how the processes underlying the membrane fabrication impact its functional features and to stimulate further in-depth research of NAqRFB membranes.

17.
J Virol ; 85(12): 6077-81, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21471233

RESUMEN

Previous studies have described the structure of purified cytoplasmic polyhedrosis virus (CPV) and that of polyhedrin protein. However, how polyhedrin molecules embed CPV particles inside infectious polyhedra is not known. By using electron tomography, we show that CPV particles are occluded within the polyhedrin crystalline lattice with a random spatial distribution and interact with the polyhedrin protein through the A-spike rather than as previously thought through the B-spike. Furthermore, both full (with RNA) and empty (no RNA) capsids were found inside polyhedra, suggesting a spontaneous RNA encapsidating process for CPV assembly in vivo.


Asunto(s)
Cuerpos de Inclusión Viral/virología , Reoviridae/metabolismo , Proteínas Estructurales Virales/metabolismo , Virión/metabolismo , Ensamble de Virus , Cápside/metabolismo , Tomografía con Microscopio Electrónico/métodos , Cuerpos de Inclusión Viral/ultraestructura , Reoviridae/química , Reoviridae/ultraestructura , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Virión/aislamiento & purificación
18.
Exp Cell Res ; 317(6): 838-48, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21211535

RESUMEN

High levels of the soluble form of E-cadherin can be found in the serum of cancer patients and are associated with poor prognosis. Despite the possible predictive value of soluble E-cadherin, little is understood concerning its patho-physiological consequences in tumor progression. In this study, we show that soluble E-cadherin facilitates cell survival via functional interaction with cellular E-cadherin. Exposure of cells to a recombinant form of soluble E-cadherin, at a concentration found in cancer patient's serum, prevents apoptosis due to serum/growth factor withdrawal, and inhibits epithelial lumen formation, a process that requires apoptosis. Further, soluble E-cadherin-mediated cell survival involves activation of the epidermal growth factor receptor (EGFR) and EGFR-mediated activation of both phosphoinositide-3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. These results are evidence of a complex functional interplay between EGFR and E-cadherin and also suggest that the presence of soluble E-cadherin in cancer patients' sera might have relevance to cell survival and tumor progression.


Asunto(s)
Apoptosis/efectos de los fármacos , Cadherinas/farmacología , Receptores ErbB/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Cadherinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Solubilidad
19.
Proc Natl Acad Sci U S A ; 106(20): 8332-7, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19416848

RESUMEN

Sanfilippo syndrome type B (mucopolysaccharidosis III B, MPS III B) is an autosomal recessive, neurodegenerative disease of children, characterized by profound mental retardation and dementia. The primary cause is mutation in the NAGLU gene, resulting in deficiency of alpha-N-acetylglucosaminidase and lysosomal accumulation of heparan sulfate. In the mouse model of MPS III B, neurons and microglia display the characteristic vacuolation of lysosomal storage of undegraded substrate, but neurons in the medial entorhinal cortex (MEC) display accumulation of several additional substances. We used whole genome microarray analysis to examine differential gene expression in MEC neurons isolated by laser capture microdissection from Naglu(-/-) and Naglu(+/-) mice. Neurons from the lateral entorhinal cortex (LEC) were used as tissue controls. The highest increase in gene expression (6- to 7-fold between mutant and control) in MEC and LEC neurons was that of Lyzs, which encodes lysozyme, but accumulation of lysozyme protein was seen in MEC neurons only. Because of a report that lysozyme induced the formation of hyperphosphorylated tau (P-tau) in cultured neurons, we searched for P-tau by immunohistochemistry. P-tau was found in MEC of Naglu(-/-) mice, in the same neurons as lysozyme. In older mutant mice, it was also seen in the dentate gyrus, an area important for memory. Electron microscopy of dentate gyrus neurons showed cytoplasmic inclusions of paired helical filaments, P-tau aggregates characteristic of tauopathies-a group of age-related dementias that include Alzheimer disease. Our findings indicate that the Sanfilippo syndrome type B should also be considered a tauopathy.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Mucopolisacaridosis III/clasificación , Mucopolisacaridosis III/genética , Muramidasa/análisis , Tauopatías , Proteínas tau/análisis , Animales , Corteza Entorrinal/química , Corteza Entorrinal/patología , Perfilación de la Expresión Génica , Genómica , Humanos , Ratones , Ratones Noqueados , Mucopolisacaridosis III/patología , Muramidasa/genética , Neuronas/patología
20.
Chem Sci ; 13(27): 8161-8170, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35919425

RESUMEN

The demand for fast-charging metal-ion batteries underlines the importance of anodes that work at high currents with no risk of dendrite formation. NiBTA, a one-dimensional Ni-based polymer derived from benzenetetramine (BTA), is a recently proposed promising material for safe fast-charging batteries. However, its charge-discharge mechanisms remained unclear and controversial. Here we solve the controversies by providing the first rigorous study using a combination of advanced theoretical and experimental techniques, including operando and ex situ X-ray diffraction, operando Raman spectroscopy and ex situ X-ray absorption near-edge spectroscopy (XANES). In safe potential ranges (0.5-2.0 V vs. M+/M, M = Li, Na or K), NiBTA offers high capacities, fast charge-discharge kinetics, high cycling stability and compatibility with various cations (Li+, Na+, K+). In the Na- and K-based cells, fast bulk faradaic processes are manifested for partially reduced states. Atomistic simulations explain the fast kinetics by facile rotations and displacements of the macromolecules in the crystal, opening channels for fast ion insertion. The material undergoes distinct crystal structure rearrangements in the Li-, Na- and K-based systems, which explains different electrochemical features. At the molecular level, the charge storage mechanism involves reversible two-electron reduction of the repeating units accompanied by a change of the absorption bandgap. The reversible reduction involves filling of the orbitals localized at the ligand moieties. No reduction of NiBTA beyond two electrons per repeating unit is observed at potentials down to 0 V vs. M+/M.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA