Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(16): 167201, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702336

RESUMEN

Cubic chiral magnets, such as Cu_{2}OSeO_{3}, exhibit a variety of noncollinear spin textures, including a trigonal lattice of spin whirls, the so-called skyrmions. Using magnetic resonant elastic x-ray scattering (REXS) on a crystalline Bragg peak and its magnetic satellites while exciting the sample with magnetic fields at gigahertz frequencies, we probe the ferromagnetic resonance (FMR) modes of these spin textures by means of the scattered intensity. Most notably, the three eigenmodes of the skyrmion lattice are detected with large sensitivity. As this novel technique, which we label REXS FMR, is carried out at distinct positions in reciprocal space, it allows us to distinguish contributions originating from different magnetic states, providing information on the precise character, weight, and mode mixing as a prerequisite of tailored excitations for applications.

2.
Phys Rev Lett ; 122(3): 037601, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735408

RESUMEN

The electronic reconstruction occurring at oxide interfaces may be the source of interesting device concepts for future oxide electronics. Among oxide devices, multiferroic tunnel junctions are being actively investigated as they offer the possibility to modulate the junction current by independently controlling the switching of the magnetization of the electrodes and of the ferroelectric polarization of the barrier. In this Letter, we show that the spin reconstruction at the interfaces of a La_{0.7}Sr_{0.3}MnO_{3}/BaTiO_{3}/La_{0.7}Sr_{0.3}MnO_{3} multiferroic tunnel junction is the origin of a spin filtering functionality that can be turned on and off by reversing the ferroelectric polarization. The ferroelectrically controlled interface spin filter enables a giant electrical modulation of the tunneling magnetoresistance between values of 10% and 1000%, which could inspire device concepts in oxides-based low dissipation spintronics.

3.
Phys Rev Lett ; 108(11): 117202, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540505

RESUMEN

We present a combined neutron diffraction and bulk thermodynamic study of the natural mineral linarite PbCuSO4(OH)2, this way establishing the nature of the ground-state magnetic order. An incommensurate magnetic ordering with a propagation vector k=(0,0.186,1/2) was found below T(N)=2.8 K in a zero magnetic field. The analysis of the neutron diffraction data yields an elliptical helical structure, where one component (0.638µ(B)) is in the monoclinic ac plane forming an angle with the a axis of 27(2)°, while the other component (0.833µ(B)) points along the b axis. From a detailed thermodynamic study of bulk linarite in magnetic fields up to 12 T, applied along the chain direction, a very rich magnetic phase diagram is established, with multiple field-induced phases, and possibly short-range-order effects occurring in high fields. Our data establish linarite as a model compound of the frustrated one-dimensional spin chain, with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. Long-range magnetic order is brought about by interchain coupling 1 order of magnitude smaller than the intrachain coupling.

4.
Nat Commun ; 7: 12532, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561914

RESUMEN

The aberration-corrected scanning transmission electron microscope (STEM) has emerged as a key tool for atomic resolution characterization of materials, allowing the use of imaging modes such as Z-contrast and spectroscopic mapping. The STEM has not been regarded as optimal for the phase-contrast imaging necessary for efficient imaging of light materials. Here, recent developments in fast electron detectors and data processing capability is shown to enable electron ptychography, to extend the capability of the STEM by allowing quantitative phase images to be formed simultaneously with incoherent signals. We demonstrate this capability as a practical tool for imaging complex structures containing light and heavy elements, and use it to solve the structure of a beam-sensitive carbon nanostructure. The contrast of the phase image contrast is maximized through the post-acquisition correction of lens aberrations. The compensation of defocus aberrations is also used for the measurement of three-dimensional sample information through post-acquisition optical sectioning.

5.
Rev Sci Instrum ; 86(6): 063902, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26133845

RESUMEN

We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses to excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.

6.
J Phys Condens Matter ; 25(1): 014004, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23221064

RESUMEN

Magnetic insulators have proven to be usable as quantum simulators for itinerant interacting quantum systems. In particular the compound (C(5)H(12)N)(2)CuBr(4) (for short: (Hpip)(2)CuBr(4)) was shown to be a remarkable realization of a Tomonaga-Luttinger liquid (TLL) and allowed us to quantitatively test the TLL theory. Substitution weakly disorders this class of compounds and thus allows us to use them to tackle questions pertaining to the effect of disorder in TLL as well, such as that of the formation of the Bose glass. In this paper we present, as a first step in this direction, a study of the properties of the related (Hpip)(2)CuCl(4) compound. We determine the exchange couplings and compute the temperature and magnetic field dependence of the specific heat, using a finite temperature density matrix renormalization group procedure. Comparison with the measured specific heat at zero magnetic field confirms the exchange parameters and Hamiltonian for the (Hpip)(2)CuCl(4) compound, giving the basis needed to begin studying the disorder effects.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Teoría Cuántica , Soluciones/química , Simulación por Computador , Marcadores de Spin
7.
Rev Sci Instrum ; 82(3): 033902, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21456758

RESUMEN

A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA