Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2303366121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437536

RESUMEN

Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.


Asunto(s)
Microalgas , Algas Marinas , Ecosistema , Presupuestos , Carbono , Cambio Climático , Cubierta de Hielo , Fitoplancton
2.
Appl Environ Microbiol ; 89(11): e0098723, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37943057

RESUMEN

IMPORTANCE: Increased ship traffic in the Arctic region raises the risk of oil spills. With an average sea depth of 1,000 m, there is a growing concern over the potential release of oil sinking in the form of marine oil snow into deep Arctic waters. At increasing depth, the oil-degrading community is exposed to increasing hydrostatic pressure, which can reduce microbial activity. However, microbes thriving in polar regions may adapt to low temperature by modulation of membrane fluidity, which is also a well-known adaptation to high hydrostatic pressure. At mild hydrostatic pressures up to 8-12 MPa, we did not observe an altered microbial activity or community composition, whereas comparable studies using deep-sea or sub-Arctic microbial communities with in situ temperatures of 4-5°C showed pressure-induced effects at 10-15 MPa. Our results suggest that the psychrophilic nature of the underwater microbial communities in the Arctic may be featured by specific traits that enhance their fitness at increasing hydrostatic pressure.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Presión Hidrostática , Regiones Árticas , Biodegradación Ambiental , Agua de Mar/microbiología , Bacterias , Hidrocarburos
3.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190353, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862812

RESUMEN

Climate changes in the Arctic may weaken the currently tight pelagic-benthic coupling. In response to decreasing sea ice cover, arctic marine systems are expected to shift from a 'sea-ice algae-benthos' to a 'phytoplankton-zooplankton' dominance. We used mollusc shells as bioarchives and fatty acid trophic markers to estimate the effects of the reduction of sea ice cover on the food exported to the seafloor. Bathyal bivalve Astarte moerchi living at 600 m depth in northern Baffin Bay reveals a clear shift in growth variations and Ba/Ca ratios since the late 1970s, which we relate to a change in food availability. Tissue fatty acid compositions show that this species feeds mainly on microalgae exported from the euphotic zone to the seabed. We, therefore, suggest that changes in pelagic-benthic coupling are likely due either to local changes in sea ice dynamics, mediated through bottom-up regulation exerted by sea ice on phytoplankton production, or to a mismatch between phytoplankton bloom and zooplankton grazing due to phenological change. Both possibilities allow a more regular and increased transfer of food to the seabed. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Asunto(s)
Exoesqueleto/anatomía & histología , Bivalvos/anatomía & histología , Ecosistema , Exoesqueleto/química , Exoesqueleto/crecimiento & desarrollo , Animales , Regiones Árticas , Bario/análisis , Bivalvos/química , Bivalvos/crecimiento & desarrollo , Calcio/análisis , Cambio Climático/historia , Ácidos Grasos/análisis , Cadena Alimentaria , Historia del Siglo XX , Historia del Siglo XXI , Cubierta de Hielo , Fitoplancton/crecimiento & desarrollo , Datación Radiométrica , Estaciones del Año , Zooplancton/crecimiento & desarrollo
4.
Glob Chang Biol ; 23(12): 5344-5357, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28776870

RESUMEN

Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an increasing input of glacial meltwater to the fjords and coastal waters around Greenland. These high latitude ecosystems are highly productive and sustain important fisheries, yet it remains uncertain how they will respond to future changes in the Arctic cryosphere. Here we show that marine-terminating glaciers play a crucial role in sustaining high productivity of the fjord ecosystems. Hydrographic and biogeochemical data from two fjord systems adjacent to the Greenland ice sheet, suggest that marine ecosystem productivity is very differently regulated in fjords influenced by either land-terminating or marine-terminating glaciers. Rising subsurface meltwater plumes originating from marine-terminating glaciers entrain large volumes of ambient deep water to the surface. The resulting upwelling of nutrient-rich deep water sustains a high phytoplankton productivity throughout summer in the fjord with marine-terminating glaciers. In contrast, the fjord with only land-terminating glaciers lack this upwelling mechanism, and is characterized by lower productivity. Data on commercial halibut landings support that coastal regions influenced by large marine-terminating glaciers have substantially higher marine productivity. These results suggest that a switch from marine-terminating to land-terminating glaciers can substantially alter the productivity in the coastal zone around Greenland with potentially large ecological and socio-economic implications.


Asunto(s)
Estuarios , Cubierta de Hielo , Agua de Mar , Animales , Regiones Árticas , Ecosistema , Monitoreo del Ambiente , Agua Dulce , Groenlandia , Fitoplancton/crecimiento & desarrollo
5.
HardwareX ; 18: e00518, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558824

RESUMEN

Interactions between coastal waters and marine-terminating glaciers in the Polar Regions play a significant role in global sea level rise fueled by a rapidly warming Arctic. The risk of glacier calving, and the abundance of ice, can make it impossible for surface vessels to access the waters near glacier termini. Alternative methods using manned aircraft are expensive. As a result, oceanographic measurements are limited near glacier termini. We present an uncrewed aerial vehicle (UAV) with an on-board winch system that allows oceanographic profiling in remote, hazardous areas using a commercial conductivity, temperature, and depth (CTD) sensor payload. The UAV is optimized for easy handling and deployment and is capable of high-speed and efficient cruise flight. An autopilot system provides pilot assistance and autonomous flight capabilities. The total weight of the UAV including payload is 6.5 kg with an endurance of 24 min. Testing of the system was conducted in South Greenland during winter conditions in March 2023 with successful profiles collected near a glacier terminus (<5 m) and in small openings in ice mélange (2.2 m). The system proved capable, reliable, and efficient. Further development of the system will allow other sensors for an even more flexible measurement suite.

6.
Proc Natl Acad Sci U S A ; 107(3): 1148-53, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20080540

RESUMEN

Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait. The diverse metabolic capacity of these organisms, which enables them to respire with oxygen and nitrate and to sustain respiratory activity even when electron acceptors are absent from the environment, may be one of the reasons for their successful colonization of diverse marine sediment environments. The contribution of eukaryotes to the removal of fixed nitrogen by respiration may equal the importance of bacterial denitrification in ocean sediments.


Asunto(s)
Foraminíferos/metabolismo , Nitratos/metabolismo , Rhizaria/metabolismo , Evolución Molecular , Filogenia , Especificidad de la Especie
7.
Nat Geosci ; 16(8): 671-674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564377

RESUMEN

The melting of the Greenland Ice Sheet is accelerating, with glaciers shifting from marine to land termination and potential consequences for fjord ecosystems downstream. Monthly samples in 2016 in two fjords in southwest Greenland show that subglacial discharge from marine-terminating glaciers sustains high phytoplankton productivity that is dominated by diatoms and grazed by larger mesozooplankton throughout summer. In contrast, melting of land-terminating glaciers results in a fjord ecosystem dominated by bacteria, picophytoplankton and smaller zooplankton, which has only one-third of the annual productivity and half the CO2 uptake compared to the fjord downstream from marine-terminating glaciers.

8.
J Hazard Mater ; 446: 130656, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603421

RESUMEN

Oil spill attenuation in Arctic marine environments depends on oil-degrading bacteria. However, the seasonally harsh conditions in the Arctic such as nutrient limitations and sub-zero temperatures limit the activity even for bacteria capable of hydrocarbon metabolism at low temperatures. Here, we investigated whether the variance between epipelagic (seasonal temperature and inorganic nutrient variations) and mesopelagic zone (stable environmental conditions) could limit the growth of oil-degrading bacteria and lead to lower oil biodegradation rates in the epipelagic than in the mesopelagic zone. Therefore, we deployed absorbents coated with three oil types in a SW-Greenland fjord system at 10-20 m (epipelagic) and 615-650 m (mesopelagic) water depth for one year. During this period we monitored the development and succession of the bacterial biofilms colonizing the oil films by 16S rRNA gene amplicon quantification and sequencing, and the progression of oil biodegradation by gas chromatography - mass spectrometry oil fingerprinting analysis. The removal of hydrocarbons was significantly different, with several polycyclic aromatic hydrocarbons showing longer half-life times in the epipelagic than in the mesopelagic zone. Bacterial community composition and density (16S rRNA genes/ cm2) significantly differed between the two zones, with total bacteria reaching to log-fold higher densities (16S rRNA genes/cm2) in the mesopelagic than epipelagic oil-coated absorbents. Consequently, the environmental conditions in the epipelagic zone limited oil biodegradation performance by limiting bacterial growth.


Asunto(s)
Contaminación por Petróleo , Petróleo , Estuarios , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Agua de Mar/microbiología , Hidrocarburos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Petróleo/metabolismo
9.
Sci Total Environ ; 855: 158962, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36170921

RESUMEN

Greenland's fjords and coastal waters are highly productive and sustain important fisheries. However, retreating glaciers and increasing meltwater are changing fjord circulation and biogeochemistry, which may threaten future productivity. The freshening of Greenland fjords caused by unprecedented melting of the Greenland Ice Sheet may alter carbonate chemistry in coastal waters, influencing CO2 uptake and causing biological consequences from acidification. However, few studies to date explore the current acidification state in Greenland coastal waters. Here we present the first-ever large-scale measurements of carbonate system parameters in 16 Greenlandic fjords and seek to identify the drivers of acidification state in these freshening ecosystems. Aragonite saturation state (Ω), a proxy for ocean acidification, was calculated from dissolved inorganic carbon (DIC) and total alkalinity from fjords along the east and west coast of Greenland spanning 68-75°N. Aragonite saturation was primarily >1 in the surface mixed layer. However, undersaturated-or corrosive--conditions (Ω < 1) were observed on both coasts (west: Ω = 0.28-3.11, east: Ω = 0.70-3.07), albeit at different depths. West Greenland fjords were largely corrosive at depth while undersaturation in East Greenland fjords was only observed in surface waters. This reflects a difference in the coastal boundary conditions and mechanisms driving acidification state. We suggest that advection of Sub Polar Mode Water and accumulation of DIC from organic matter decomposition drive corrosive conditions in the West, while freshwater alkalinity dilution drives acidification in the East. The presence of marine terminating glaciers also impacted local acidification states by influencing fjord circulation: upwelling driven by subglacial discharge brought corrosive bottom waters to shallower depths. Meanwhile, discharge from land terminating glaciers strengthened stratification and diluted alkalinity. Regardless of the drivers in each system, increasing freshwater discharge will likely lower carbonate saturation states and impact biotic and abiotic carbon uptake in the future.


Asunto(s)
Cáusticos , Estuarios , Ecosistema , Agua de Mar/química , Concentración de Iones de Hidrógeno , Groenlandia , Carbonato de Calcio/análisis , Carbonatos/análisis , Carbono
10.
Glob Chang Biol ; 18(10): 2981-2994, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28741817

RESUMEN

We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub-Arctic conditions from 78 ºN to 64 ºN. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice-free periods and higher water temperature. The depth limit of 10% kelp cover was 9-14 m at the northernmost sites (77-78 ºN) with only 94-133 ice-free days per year, but extended to depths of 21-33 m further south (73 ºN-64 ºN) where >160 days per year were ice-free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open-water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 ºN), inter-annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open-water period increases. As kelps increase carbon-flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem.

11.
J Environ Monit ; 14(5): 1437-43, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22481207

RESUMEN

A pilot study is presented evaluating selected chlorinated pesticides as chemical tracers for water masses in a sub-Arctic fjord system (Godthåbsfjord, western Greenland). Polyoxymethylene (POM) based passive water samplers were deployed during summer-autumn 2010. The levels of the analysed chlorinated pesticides in the fjord surface waters were found to be low compared to earlier studies. α-Hexachlorocyclohexane (α-HCH) and hexachlorobenzene (HCB) were the predominant contaminants. However, these two compounds have higher levels in oceanic water compared to freshwater influenced fjord waters. These chemicals can thus be considered as indicators for direct atmospheric long-range transport, while the organochlorine pesticides like trans-, cis-chlordane, trans-nonachlor and oxychlordane that are detected in the inner parts of the fjord are indicators for potential freshwater sources such as rivers and glacial meltwater runoff (secondary sources). The average values were 50 pg L(-1) for HCB and 11 pg L(-1) for α-HCH. These concentrations are comparable to levels in fjords in Svalbard (Norwegian Arctic), but lower than in open and/or ice covered oceans in the Canadian Arctic. Two air samplers were deployed for the identification of direct atmospheric contributions. Local contamination sources do not contribute significantly. The study demonstrated the value of passive water sampling devices for comprehensive hydrological characterization of Arctic coastal waters.


Asunto(s)
Monitoreo del Ambiente , Hexaclorobenceno/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Groenlandia , Hexaclorociclohexano/análisis , Ciclo Hidrológico , Contaminación Química del Agua
12.
HardwareX ; 11: e00313, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35602242

RESUMEN

Accelerated melting of ice in Polar Regions due to global warming increases freshwater input to coastal waters from marine terminating glaciers. Lack of measurements near the glacier terminus limits our knowledge of the mixing processes between freshwater and the underlying ocean. We present a low-cost (< € 3200) and lightweight (2.6 kg) drone-deployed, retrievable conductivity, temperature and depth (CTD) instrument for remote controlled (1 km) autonomous profiling in highly hazardous and remote areas. The instrument was deployed with a drone taking off from land and marine vessels to perform measurements near tidewater glaciers termini of the Greenland ice sheet. The free-flowing profiler is reusable due to a compact ballast based single-shot buoyancy engine and post-profiling pickup by drone. It can reach a depth of up to 250 m, and is equipped with low-cost sensors for conductivity, temperature, and depth measurements. During decent the profiler reaches a velocity of about 0.48 m/s, resulting in about 3.5 data points pr. m depth, but is designed to easily vary the velocity by changing buoyancy setup before deployment. Successful tests were conducted at marine terminating glaciers in Northeast Greenland in August 2021.

13.
Chemosphere ; 286(Pt 3): 131751, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34399257

RESUMEN

Oil spills in Arctic marine environments are expected to increase concurrently with the expansion of shipping routes and petroleum exploitation into previously inaccessible ice-dominated regions. Most research on oil biodegradation focusses on the bulk oil, but the fate of the water-accommodated fraction (WAF), mainly composed of toxic aromatic compounds, is largely underexplored. To evaluate the bacterial degradation capacity of such dissolved aromatics in Greenlandic seawater, microcosms consisting of 0 °C seawater polluted with WAF were investigated over a 3-month period. With a half-life (t1/2) of 26 days, m-xylene was the fastest degraded compound, as measured by gas chromatography - mass spectrometry. Substantial slower degradation was observed for ethylbenzene, naphthalenes, phenanthrene, acenaphthylene, acenaphthene and fluorenes with t1/2 of 40-105 days. Colwellia, identified by 16S rRNA gene sequencing, was the main potential degrader of m-xylene. This genus occupied up to 47 % of the bacterial community until day 10 in the microcosms. Cycloclasticus and Zhongshania aliphaticivorans, potentially utilizing one-to three-ringed aromatics, replaced Colwellia between day 10 and 96 and occupied up to 6 % and 23 % of the community, respectively. Although most of the WAF can ultimately be eliminated in microcosms, our results suggest that the restoration of an oil-impacted Arctic environment may be slow as most analysed compounds had t1/2 of over 2-3 months and the detrimental effects of a spill towards the marine ecosystem likely persist during this time.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Regiones Árticas , Biodegradación Ambiental , Ecosistema , Gammaproteobacteria , Hidrocarburos , Contaminación por Petróleo/análisis , ARN Ribosómico 16S/genética , Agua de Mar , Agua , Contaminantes Químicos del Agua/análisis
14.
HardwareX ; 12: e00331, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35795086

RESUMEN

Climate change is rapidly altering the Arctic environment. Although long-term environmental observations have been made at a few locations in the Arctic, the incomplete coverage from ground stations is a main limitation to observations in these remote areas. Here we present a wind and sun powered multi-purpose mobile observatory (ARC-MO) that enables near real time measurements of air, ice, land, rivers, and marine parameters in remote off-grid areas. Two test units were constructed and placed in Northeast Greenland where they have collected data from cabled and wireless instruments deployed in the environment since late summer 2021. The two units can communicate locally via WiFi (units placed 25 km apart) and transmit near-real time data globally over satellite. Data are streamed live and accessible from (https://gios.org). The cost of one mobile observatory unit is c. 304.000€. These test units demonstrate the possibility for integrative and automated environmental data collection in remote coastal areas and could serve as models for a proposed global observatory system.

15.
Ambio ; 51(2): 318-332, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34822116

RESUMEN

Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air-sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.


Asunto(s)
Cubierta de Hielo , Microbiota , Regiones Árticas , Cambio Climático , Ecosistema , Cubierta de Hielo/microbiología
16.
HardwareX ; 10: e00207, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35607662

RESUMEN

The rapid warming of our planet has resulted in accelerated melting of ice in polar regions. Currently we have limited knowledge on how, where and when the surface meltwater layer is mixed with the underlying ocean due to lack of observations in these remote areas. We present a lightweight (17 kg) and low-cost (6000€) instrument for autonomous profiling across the strongly stratified upper layer in Arctic coastal waters, freshened by the riverine input and meltwater from glaciers, icebergs, and sea ice. The profiler uses a specially designed plunger buoyancy engine to displace up to 700 cm3 of water and allows for autonomous dives to 200 m depth. It can carry different sensor packages and convey its location by satellite communication. Two modes are available: (a) a free-floating mode and (b) a moored mode, where the instrument is anchored to the seafloor. In both modes, the profiler controls its velocity of 12 ± 0.3 cm/s resulting in 510 ± 22 data points per 100 m depth. Equipped with several sensors, e.g. conductivity, temperature, oxygen, and pressure, the autonomous profiler was successfully tested in a remote Northeast Greenlandic fjord. Data has been compared to traditional CTD instrument casts performed nearby.

17.
Sci Rep ; 11(1): 2915, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536514

RESUMEN

The pelagic spring bloom is essential for Arctic marine food webs, and a crucial driver of carbon transport to the ocean depths. A critical challenge is understanding its timing and magnitude, to predict its changes in coming decades. Spring bloom onset is typically light-limited, beginning when irradiance increases or during ice breakup. Here we report an acute 9-day under-ice algal bloom in nutrient-poor, freshwater-influenced water under 1-m thick sea ice. It was dominated by mixotrophic brackish water haptophytes (Chrysochromulina/ Prymnesium) that produced 5.7 g C m-2 new production. This estimate represents about half the annual pelagic production, occurring below sea ice with a large contribution from the mixotrophic algae bloom. The freshwater-influenced, nutrient-dilute and low light environment combined with mixotrophic community dominance implies that phagotrophy played a critical role in the under-ice bloom. We argue that such blooms dominated by potentially toxic mixotrophic algae might become more common and widespread in the future Arctic Ocean.

18.
Mar Pollut Bull ; 173(Pt A): 112996, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34627034

RESUMEN

As climate change brings reduced sea ice cover and longer ice-free summers to the Arctic, northern Canada is experiencing an increase in shipping and industrial activity in this sensitive region. Disappearing sea ice, therefore, makes the Arctic region susceptible to accidental releases of different types of oil and fuel pollution resulting in a pressing need for the development of appropriate scientific knowledge necessary to inform regulatory policy formulation. In this study, we examine the microstructure of the surficial layers of sea ice exposed to oil using X-ray microtomography. Through analysis, 3D imaging of the spatial distribution of the ice's components (brine, air, and oil) were made. Additional quantitative information regarding the size, proximity, orientation, and geometry of oil inclusions were computed to ascertain discernable relationships between oil and the other components of the ice. Our results indicate implications for airborne remote sensing and bioremediation of the upper sea ice layers.


Asunto(s)
Cubierta de Hielo , Petróleo , Regiones Árticas , Tecnología de Sensores Remotos , Microtomografía por Rayos X
19.
HardwareX ; 7: e00101, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35495204

RESUMEN

Icebergs account for approximately half of the freshwater flux from the Greenland Ice Sheet and they can impact marine ecosystems by releasing nutrients and sediments into the ocean as they drift and melt. Parameterizing iceberg fluxes of nutrients and sediments to fjord and ocean waters remains a difficult task due to the complexity of ice-ocean interactions and is complicated by a lack of observations. Acquiring iceberg samples can be difficult and dangerous, as icebergs can break apart and roll without warning. Here we present open source design files for a small, lightweight ice coring drill that can be reproduced using modern computer numerical control (CNC) machining and 3D printing technology. This ice core drill can rapidly acquire small ice samples from icebergs and bergy bits using a standard commercial, off-the-shelf battery-operated hand drill. Design files and a recent field expedition to Northwest Greenland are described. Ice core collection required only 30 s, thereby minimizing risks to scientists.

20.
Water Res ; 148: 459-468, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408732

RESUMEN

In pristine sea ice-covered Arctic waters the potential of natural attenuation of oil spills has yet to be uncovered, but increasing shipping and oil exploitation may bring along unprecedented risks of oil spills. We deployed adsorbents coated with thin oil films for up to 2.5 month in ice-covered seawater and sea ice in Godthaab Fjord, SW Greenland, to simulate and investigate in situ biodegradation and photooxidation of dispersed oil. GC-MS-based chemometric methods for oil fingerprinting were used to identify characteristic signatures for dissolution, biodegradation and photooxidation. In sub-zero temperature seawater, fast degradation of n-alkanes was observed with estimated half-life times of ∼7 days. PCR amplicon sequencing and qPCR quantification of bacterial genes showed that a biofilm with a diverse microbial community colonised the oil films, yet a population related to the psychrophilic hydrocarbonoclastic gammaproteobacterium Oleispira antarctica seemed to play a key role in n-alkane degradation. Although Oleispira populations were also present in sea ice, we found that biofilms in sea ice had 25 to 100 times lower bacterial densities than in seawater, which explained the non-detectable n-alkane degradation in sea ice. Fingerprinting revealed that photooxidation, but not biodegradation, transformed polycyclic aromatic compounds through 50 cm-thick sea ice and in the upper water column with removal rates up to ∼1% per day. Overall, our results showed a fast biodegradation of n-alkanes in sea ice-covered seawater, but suggested that oils spills will expose the Arctic ecosystem to bio-recalcitrant PACs over prolonged periods of time.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Regiones Árticas , Biodegradación Ambiental , Groenlandia , Cubierta de Hielo , Agua de Mar , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA