Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Immunol ; 10(11): 1215-21, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19820708

RESUMEN

Cell-autonomous innate immune responses against bacteria attempting to colonize the cytosol of mammalian cells are incompletely understood. Polyubiquitylated proteins can accumulate on the surface of such bacteria, and bacterial growth is restricted by Tank-binding kinase (TBK1). Here we show that NDP52, not previously known to contribute to innate immunity, recognizes ubiquitin-coated Salmonella enterica in human cells and, by binding the adaptor proteins Nap1 and Sintbad, recruits TBK1. Knockdown of NDP52 and TBK1 facilitated bacterial proliferation and increased the number of cells containing ubiquitin-coated salmonella. NDP52 also recruited LC3, an autophagosomal marker, and knockdown of NDP52 impaired autophagy of salmonella. We conclude that human cells utilize the ubiquitin system and NDP52 to activate autophagy against bacteria attempting to colonize their cytosol.


Asunto(s)
Autofagia , Proteínas Nucleares/inmunología , Salmonella enterica/inmunología , Ubiquitina/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/inmunología , Proteínas/metabolismo , Interferencia de ARN , Infecciones por Salmonella/inmunología , Ubiquitina/metabolismo , Ubiquitinación , ARNt Metiltransferasas
2.
J Biol Chem ; 288(16): 11546-54, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23508954

RESUMEN

NF-κB is a key regulator of immune gene expression in metazoans. It is currently unclear what changes occurred in NF-κB during animal evolution and what features remained conserved. To address this question, we compared the biochemical and functional properties of NF-κB proteins derived from human and the starlet sea anemone (Nematostella vectensis) in 1) a high-throughput assay of in vitro preferences for DNA sequences, 2) ChIP analysis of in vivo recruitment to the promoters of target genes, 3) a LUMIER-assisted examination of interactions with cofactors, and 4) a transactivation assay. We observed a remarkable evolutionary conservation of the DNA binding preferences of the animal NF-κB orthologs. We also show that NF-κB dimerization properties, nuclear localization signals, and binding to cytosolic IκBs are conserved. Surprisingly, the Bcl3-type nuclear IκB proteins functionally pair up only with NF-κB derived from their own species. The basis of the differential NF-κB recognition by IκB subfamilies is discussed.


Asunto(s)
Evolución Biológica , FN-kappa B/genética , FN-kappa B/metabolismo , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Animales , Proteínas del Linfoma 3 de Células B , Humanos , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Multimerización de Proteína/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Immunol ; 189(10): 4852-8, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066157

RESUMEN

Double-stranded RNA-induced antiviral gene expression in mammalian cells requires activation of IFN regulatory factor 3 (IRF3). In this study, we show that the IL-17R adaptor protein Act1/CIKS is involved in this process. Small interfering RNA-mediated knockdown of Act1 in primary human skin fibroblasts specifically attenuates expression of IFN-ß and IFN-stimulated antiviral genes induced by a synthetic viral mimic, polyinosinic-polycytidylic acid. Ectopic expression of Act1 potentiates the IRF3-driven expression of a synthetic reporter construct as well as the induction of antiviral genes. We demonstrate that this effect is dependent on the ability of Act1 to functionally and physically interact with IκB kinase ε (IKKε), a known IRF3 kinase, and IRF3: 1) Act1 binds IKKε and IRF3; 2) Act1-induced IRF3 activation can be blocked specifically by coexpression of a catalytically inactive mutant of IKKε; and 3) mutants of IRF3, either lacking the C terminus or mutated at the key phosphorylation sites, important for its activation by IKKε, do not support Act1-dependent IRF3 activation. We also show that a zebrafish Act1 protein is able to trigger antiviral gene expression in human cells, which suggests an evolutionarily conserved function of vertebrate Act1 in the host defense against viruses. On the whole, our study demonstrates that Act1 is a component of antiviral signaling.


Asunto(s)
Fibroblastos/inmunología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Transducción de Señal/inmunología , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular Tumoral , Evolución Molecular , Fibroblastos/metabolismo , Fibroblastos/virología , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo , Mutación , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/metabolismo , Virus ARN/genética , Virus ARN/metabolismo , ARN Interferente Pequeño , Transducción de Señal/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Pez Cebra/genética , Pez Cebra/inmunología , Pez Cebra/virología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
4.
J Immunol ; 187(10): 5357-62, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21964025

RESUMEN

Excessive inflammation during bacterial and viral infections is destructive to the host and involves elevated production of proinflammatory cytokines. It is especially deleterious in organs with space constraints such as lung and the CNS. Indeed, a number of viruses that infect lungs, such as avian influenza virus, SARS-associated coronavirus, and respiratory syncytial virus, elicit a very high level of proinflammatory cytokines; however, it is unclear what triggers their production. In this study, we show that IL-17 commonly produced during viral infection specifically augments a proinflammatory response by directly synergizing with antiviral signaling. Costimulation of primary human fibroblasts with IL-17 greatly enhanced respiratory syncytial virus-induced or synthetic dsRNA-based viral mimic polyinosinic:polycytidylic acid-induced expression of proinflammatory genes without affecting expression of IFN-ß-stimulated or IFN-stimulated genes. Knockdown of expression of known mediators of the antiviral signaling pathway revealed that the IL-17-poly(I:C) synergy depends on the presence of the transcriptional factors RelA and IFN regulatory factor 3 and IκB kinases. Moreover, this synergy was blocked by an IκB kinase inhibitor, BAY 11-7082. These findings shed light on the molecular mechanisms behind IL-17-dependent immunopathology observed in viral infections.


Asunto(s)
Antivirales/farmacología , Fibroblastos/inmunología , Fibroblastos/patología , Mediadores de Inflamación/fisiología , Interleucina-17/fisiología , Virus Sincitiales Respiratorios/inmunología , Regulación hacia Arriba/inmunología , Antivirales/metabolismo , Células Cultivadas , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Citocinas/fisiología , Fibroblastos/virología , Regulación de la Expresión Génica/inmunología , Humanos , Quinasa I-kappa B/biosíntesis , Quinasa I-kappa B/genética , Quinasa I-kappa B/fisiología , Mediadores de Inflamación/metabolismo , Factor 3 Regulador del Interferón/biosíntesis , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/fisiología , Poli I-C/antagonistas & inhibidores , Poli I-C/farmacología , Transducción de Señal/genética , Transducción de Señal/inmunología , Piel/inmunología , Piel/patología , Piel/virología , Factor de Transcripción ReIA/biosíntesis , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/fisiología
5.
Biochem J ; 443(2): 491-503, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22280367

RESUMEN

uPA (urokinase-type plasminogen activator) stimulates cell migration through multiple pathways, including formation of plasmin and extracellular metalloproteinases, and binding to the uPAR (uPA receptor; also known as CD87), integrins and LRP1 (low-density lipoprotein receptor-related protein 1) which activate intracellular signalling pathways. In the present paper we report that uPA-mediated cell migration requires an interaction with fibulin-5. uPA stimulates migration of wild-type MEFs (mouse embryonic fibroblasts) (Fbln5+/+ MEFs), but has no effect on fibulin-5-deficient (Fbln5-/-) MEFs. Migration of MEFs in response to uPA requires an interaction of fibulin-5 with integrins, as MEFs expressing a mutant fibulin-5 incapable of binding integrins (Fbln(RGE/RGE) MEFs) do not migrate in response to uPA. Moreover, a blocking anti-(human ß1-integrin) antibody inhibited the migration of PASMCs (pulmonary arterial smooth muscle cells) in response to uPA. Binding of uPA to fibulin-5 generates plasmin, which excises the integrin-binding N-terminal cbEGF (Ca2+-binding epidermal growth factor)-like domain, leading to loss of ß1-integrin binding. We suggest that uPA promotes cell migration by binding to fibulin-5, initiating its cleavage by plasmin, which leads to its dissociation from ß1-integrin and thereby unblocks the capacity of integrin to facilitate cell motility.


Asunto(s)
Movimiento Celular , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Recombinantes/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Células Cultivadas , Proteínas de la Matriz Extracelular/deficiencia , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Activador de Plasminógeno de Tipo Uroquinasa/genética
6.
Blood ; 115(22): 4421-30, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20237317

RESUMEN

Spatially and temporally controlled expression of inflammatory mediators is critical for an appropriate immune response. In this study, we define the role for interferon regulatory factor 5 (IRF5) in secretion of tumor necrosis factor (TNF) by human dendritic cells (DCs). We demonstrate that DCs but not macrophages have high levels of IRF5 protein, and that IRF5 is responsible for the late-phase expression of TNF, which is absent in macrophages. Sustained TNF secretion is essential for robust T-cell activation by DCs. Systematic bioinformatic and biochemical analyses of the TNF gene locus map 2 sites of IRF5 recruitment: 5' upstream and 3' downstream of the TNF gene. Remarkably, while IRF5 can directly bind to DNA in the upstream region, its recruitment to the downstream region depends on the protein-protein interactions with NF-kappaB RelA. This study provides new insights into diverse molecular mechanisms employed by IRF5 to regulate gene expression and implicates RelA-IRF5 interactions as a putative target for cell-specific modulation of TNF expression.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factores Reguladores del Interferón/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Cartilla de ADN/genética , Células Dendríticas/efectos de los fármacos , Humanos , Técnicas In Vitro , Factores Reguladores del Interferón/genética , Lipopolisacáridos/farmacología , Activación de Linfocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Inmunológicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional , Factor de Necrosis Tumoral alfa/genética
7.
J Mol Evol ; 72(5-6): 521-30, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21643828

RESUMEN

SEF/IL-17R/CIKS/ACT1 homology (SEFIR) domain containing proteins, which include the IL-17 receptors and an adaptor protein Act1, have essential roles in vertebrate immunity. However, the molecular mechanisms of Act1 function remain largely unexplored. In this article, we employed an evolutionary analysis to discover novel structural and functional properties of Act1. Firstly, we have found that the previously identified helix-loop-helix and Ufd2-box domains in human Act1 have relatively recent evolutionary origins in higher vertebrates. Zebrafish Act1, which lacks these domains, is unable to induce JNK phosphorylation and activate cytokine expression when expressed in human cells. Secondly, we have established that Act1-like proteins contain DEATH-domains in basal animals, such as Hydra and primitive chordates, but lack this domain in vertebrates. Finally, we have shown that Act1-TRAF6 interactions are conserved throughout vertebrate evolution: Act1 derived from zebrafish can bind to TRAF6 and activate NF-κB in human cells. Moreover, we have identified a novel highly conserved motif at the amino-terminus of Act1, which is critical for binding to TRAF6 and activating NF-κB-dependent gene expression. We propose a model of evolutionary changes in Act1-mediated signalling, which contributes to a better understanding of evolution of the vertebrate immunity.


Asunto(s)
Evolución Molecular , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/química , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Vertebrados/inmunología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Células HEK293 , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica/genética , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Alineación de Secuencia , Transducción de Señal , Especificidad de la Especie , Factor 6 Asociado a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Vertebrados/genética , Vertebrados/metabolismo
8.
Nat Commun ; 12(1): 6702, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795257

RESUMEN

Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.


Asunto(s)
Benzamidas/farmacología , Quinasa 2 de Adhesión Focal/metabolismo , Inflamación/prevención & control , Factores Reguladores del Interferón/metabolismo , Pirazinas/farmacología , Sulfonamidas/farmacología , Animales , Células Cultivadas , Colitis/genética , Colitis/metabolismo , Colitis/prevención & control , Citocinas/genética , Citocinas/metabolismo , Quinasa 2 de Adhesión Focal/genética , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Inflamación/genética , Inflamación/metabolismo , Factores Reguladores del Interferón/genética , Intestinos/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Fosforilación/efectos de los fármacos , Células RAW 264.7
9.
PLoS Pathog ; 4(2): e22, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18266467

RESUMEN

The IkappaB kinase (IKK) complex is a key regulator of signal transduction pathways leading to the induction of NF-kappaB-dependent gene expression and production of pro-inflammatory cytokines. It therefore represents a major target for the development of anti-inflammatory therapeutic drugs and may be targeted by pathogens seeking to diminish the host response to infection. Previously, the vaccinia virus (VACV) strain Western Reserve B14 protein was characterised as an intracellular virulence factor that alters the inflammatory response to infection by an unknown mechanism. Here we demonstrate that ectopic expression of B14 inhibited NF-kappaB activation in response to TNFalpha, IL-1beta, poly(I:C), and PMA. In cells infected with VACV lacking gene B14R (vDeltaB14) there was a higher level of phosphorylated IkappaBalpha but a similar level of IkappaBalpha compared to cells infected with control viruses expressing B14, suggesting B14 affects IKK activity. Direct evidence for this was obtained by showing that B14 co-purified and co-precipitated with the endogenous IKK complex from human and mouse cells and inhibited IKK complex enzymatic activity. Notably, the interaction between B14 and the IKK complex required IKKbeta but not IKKalpha, suggesting the interaction occurs via IKKbeta. B14 inhibited NF-kappaB activation induced by overexpression of IKKalpha, IKKbeta, and a constitutively active mutant of IKKalpha, S176/180E, but did not inhibit a comparable mutant of IKKbeta, S177/181E. This suggested that phosphorylation of these serine residues in the activation loop of IKKbeta is targeted by B14, and this was confirmed using Ab specific for phospho-IKKbeta.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Virus Vaccinia/fisiología , Proteínas Virales/metabolismo , Factores de Virulencia/farmacología , Animales , Regulación Viral de la Expresión Génica , Células HeLa , Humanos , Quinasa I-kappa B/genética , Ratones , Fosforilación , Transducción de Señal , Proteínas Virales/genética
10.
Nat Commun ; 9(1): 3797, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228258

RESUMEN

Inflammatory bowel disease (IBD) are heterogenous disorders of the gastrointestinal tract caused by a spectrum of genetic and environmental factors. In mice, overlapping regions of chromosome 3 have been associated with susceptibility to IBD-like pathology, including a locus called Hiccs. However, the specific gene that controls disease susceptibility remains unknown. Here we identify a Hiccs locus gene, Alpk1 (encoding alpha kinase 1), as a potent regulator of intestinal inflammation. In response to infection with the commensal pathobiont Helicobacter hepaticus (Hh), Alpk1-deficient mice display exacerbated interleukin (IL)-12/IL-23 dependent colitis characterized by an enhanced Th1/interferon(IFN)-γ response. Alpk1 controls intestinal immunity via the hematopoietic system and is highly expressed by mononuclear phagocytes. In response to Hh, Alpk1-/- macrophages produce abnormally high amounts of IL-12, but not IL-23. This study demonstrates that Alpk1 promotes intestinal homoeostasis by regulating the balance of type 1/type 17 immunity following microbial challenge.


Asunto(s)
Colitis/inmunología , Infecciones por Helicobacter/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-12/inmunología , Proteínas Quinasas/metabolismo , Células TH1/inmunología , Animales , Células de la Médula Ósea , Trasplante de Médula Ósea , Colitis/microbiología , Colitis/patología , Colon , Modelos Animales de Enfermedad , Femenino , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter hepaticus/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Interleucina-12/metabolismo , Interleucina-23/inmunología , Interleucina-23/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Quimera por Radiación , Células TH1/metabolismo
11.
Cell Host Microbe ; 22(6): 733-745.e5, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29241040

RESUMEN

Interactions between the host and its microbiota are of mutual benefit and promote health. Complex molecular pathways underlie this dialog, but the identity of microbe-derived molecules that mediate the mutualistic state remains elusive. Helicobacter hepaticus is a member of the mouse intestinal microbiota that is tolerated by the host. In the absence of an intact IL-10 signaling, H. hepaticus induces an IL-23-driven inflammatory response in the intestine. Here we investigate the interactions between H. hepaticus and host immune cells that may promote mutualism, and the microbe-derived molecule(s) involved. Our results show that H. hepaticus triggers early IL-10 induction in intestinal macrophages and produces a large soluble polysaccharide that activates a specific MSK/CREB-dependent anti-inflammatory and repair gene signature via the receptor TLR2. These data identify a host-bacterial interaction that promotes mutualistic mechanisms at the intestinal interface. Further understanding of this pathway may provide novel prevention and treatment strategies for inflammatory bowel disease.


Asunto(s)
Helicobacter hepaticus/inmunología , Helicobacter hepaticus/metabolismo , Inmunosupresores/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Polisacáridos Bacterianos/metabolismo , Simbiosis , Animales , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Ratones , Receptor Toll-Like 2/metabolismo
12.
Nat Med ; 23(5): 579-589, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28368383

RESUMEN

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority. Here we show that, relative to healthy controls, inflamed intestinal tissues from patients with IBD express high amounts of the cytokine oncostatin M (OSM) and its receptor (OSMR), which correlate closely with histopathological disease severity. The OSMR is expressed in nonhematopoietic, nonepithelial intestinal stromal cells, which respond to OSM by producing various proinflammatory molecules, including interleukin (IL)-6, the leukocyte adhesion factor ICAM1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF-resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, according to an analysis of more than 200 patients with IBD, including two cohorts from phase 3 clinical trials of infliximab and golimumab, high pretreatment expression of OSM is strongly associated with failure of anti-TNF therapy. OSM is thus a potential biomarker and therapeutic target for IBD, and has particular relevance for anti-TNF-resistant patients.


Asunto(s)
Enfermedades Inflamatorias del Intestino/genética , Subunidad beta del Receptor de Oncostatina M/genética , Oncostatina M/genética , Adulto , Anciano , Animales , Anticuerpos Monoclonales/uso terapéutico , Estudios de Casos y Controles , Quimiocinas , Colitis/genética , Colitis/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Fármacos Gastrointestinales/uso terapéutico , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Inmunohistoquímica , Inflamación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Infliximab/uso terapéutico , Molécula 1 de Adhesión Intercelular/inmunología , Interleucina-6/inmunología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Oncostatina M/inmunología , Oncostatina M/metabolismo , Subunidad beta del Receptor de Oncostatina M/inmunología , Subunidad beta del Receptor de Oncostatina M/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adulto Joven
13.
J Interferon Cytokine Res ; 35(2): 71-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25259415

RESUMEN

Interferon regulatory factor 5 (IRF5) is a crucial transcription factor in a number of immune and homeostatic processes, including host defense against pathogens, tumorigenesis, and autoimmunity. Upon induction of immune signaling pathways, IRF5 undergoes post-translational modifications such as phosphorylation and ubiqutination, which are believed to trigger IRF5 nuclear translocation from the cytosol, followed by recruitment to promoters where transcription of its gene targets is initiated. In this review, we systematically analyze the data published in the last decade on IRF5 activation, including the role of post-translational modifications and the proposed enzymes targeting IRF5 in this process. We discuss suggested models of IRF5 activation in connection to pathway-specific functions of IRF5.


Asunto(s)
Núcleo Celular/metabolismo , Factores Reguladores del Interferón/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Humanos
15.
Autophagy ; 6(2): 288-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20104023

RESUMEN

Autophagy functions as a cell-autonomous effector mechanism of innate immunity by separating bacteria from cytosolic resources and delivering them for lysosomal destruction. How cytosolic bacteria are targeted for autophagy is incompletely understood. We recently discovered that Salmonella enterica serotype Typhimurium and Streptococcus pyogenes are detected by NDP52 (nuclear dot protein 52 kDa), after these bacteria enter the cytosol of human cells and become decorated with polyubiquitinated proteins. NDP52 binds the bacterial ubiquitin coat as well as ATG8/LC3 and delivers cytosolic bacteria into autophagosomes. In the absence of NDP52 ubiquitin-coated bacteria accumulate outside ATG8/LC3(+) autophagosomes. Cells lacking NDP52 fail to restrict bacterial proliferation, as do cells depleted of TBK1, an IKK family kinase colocalizing with NDP52 at the bacterial surface. Our findings demonstrate the existence of a receptor for the selective autophagy of cytosolic bacteria, suggesting that cells are able to differentiate between antibacterial and other forms of autophagy.


Asunto(s)
Autofagia/fisiología , Proteínas Nucleares/metabolismo , Salmonella typhimurium/metabolismo , Streptococcus pyogenes/metabolismo , Ubiquitina/metabolismo , Citosol/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Salmonella typhimurium/citología , Streptococcus pyogenes/ultraestructura
16.
Sci Signal ; 1(39): pt7, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18827221

RESUMEN

Vertebrates have evolved acquired immunity, but to detect an infection in its early stages they, nonetheless, rely on Toll-like receptors (TLRs) and other innate immune receptors. We have performed genomewide mutagenesis screens in an immortalized murine cell line to study nuclear factor kappaBeta (NF-kappaB) signaling in the context of innate immunity. To enable metabolic and physical selection for alterations in NF-kappaB signaling, we equipped cells with multiple reporter genes. Despite the diploid nature of the cells, multiple mutants unresponsive to lipopolysaccharide and CpG DNA were isolated from as few as 10 million mutagenized cells. Mutant clones may lead to the discovery of novel genes, and in combination with syngeneic wild-type reporter cells, they may allow a detailed functional analysis of NF-kappaB signaling. Compared with the use of whole animals in genetic screens, somatic cell genetics allows the isolation of genes required for innate immunity, even if these genes also have an essential function in development. Our discovery of an essential role for the endoplasmic reticulum chaperone gp96 (Grp94) in the maturation of TLRs and our work on the regulation of the inhibitor of nuclear factor kappaB kinase (IKK) complex by Nemo will be discussed in this context.


Asunto(s)
Inmunidad Innata , FN-kappa B/fisiología , Receptores Toll-Like/fisiología , Animales , Fosfatos de Dinucleósidos , Genes Reporteros , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Glicoproteínas de Membrana/fisiología , Mutación , FN-kappa B/genética , FN-kappa B/inmunología , Transducción de Señal , Receptores Toll-Like/inmunología , Ubiquitinación
17.
EMBO J ; 26(13): 3180-90, 2007 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-17568778

RESUMEN

The expression of antiviral genes during infection is controlled by inducible transcription factors such as IRF3 (interferon regulatory factor). Activation of IRF3 requires its phosphorylation by TBK1 (TANK-binding kinase) or IKKi (inhibitor of nuclear factor kappaB kinase, inducible). We have identified a new and essential component of this pathway, the adaptor protein SINTBAD (similar to NAP1 TBK1 adaptor). SINTBAD constitutively binds TBK1 and IKKi but not related kinases. Upon infection with Sendai virus, SINTBAD is essential for the efficient induction of IRF-dependent transcription, as are two further TBK1 adaptors, TANK and NAP1. We identified a conserved TBK1/IKKi-binding domain (TBD) in the three adaptors, predicted to form an alpha-helix with residues essential for kinase binding clustering on one side. Isolated TBDs compete with adaptor binding to TBK1 and prevent poly(I:C)-induced IRF-dependent transcription. Our results suggest that efficient signal transduction upon viral infection requires SINTBAD, TANK and NAP1 because they link TBK1 and IKKi to virus-activated signalling cascades.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad Innata/inmunología , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Secuencia Conservada , Activación Enzimática , Humanos , Quinasa I-kappa B/metabolismo , Inmunidad Innata/efectos de los fármacos , Factores Reguladores del Interferón/metabolismo , Proteínas de la Membrana/química , Ratones , Datos de Secuencia Molecular , Poli I-C/farmacología , Unión Proteica , Proteínas/química , Interferencia de ARN , Virus Sendai/inmunología , Alineación de Secuencia , ARNt Metiltransferasas
18.
J Cell Sci ; 120(Pt 15): 2574-85, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17635994

RESUMEN

Myosin VI has been implicated in many cellular processes including endocytosis, secretion, membrane ruffling and cell motility. We carried out a yeast two-hybrid screen and identified TRAF6-binding protein (T6BP) and nuclear dot protein 52 (NDP52) as myosin VI binding partners. Myosin VI interaction with T6BP and NDP52 was confirmed in vitro and in vivo and the binding sites on each protein were accurately mapped. Immunofluorescence and electron microscopy showed that T6BP, NDP52 and myosin VI are present at the trans side of the Golgi complex, and on vesicles in the perinuclear region. Although the SKICH domain in T6BP and NDP52 does not mediate recruitment into membrane ruffles, loss of T6BP and NDP52 in RNAi knockdown cells results in reduced membrane ruffling activity and increased stress fibre and focal adhesion formation. Furthermore, we observed in these knockdown cells an upregulation of constitutive secretion of alkaline phosphatase, implying that both proteins act as negative regulators of secretory traffic at the Golgi complex. T6BP was also found to inhibit NF-kappaB activation, implicating it in the regulation of TRAF6-mediated cytokine signalling. Thus myosin VI-T6BP interactions may link membrane trafficking pathways with cell adhesion and cytokine-dependent cell signalling.


Asunto(s)
Adhesión Celular , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Actinas/aislamiento & purificación , Actinas/metabolismo , Fosfatasa Alcalina/metabolismo , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/aislamiento & purificación , Redes y Vías Metabólicas , Microscopía Electrónica de Transmisión , Proteínas de Neoplasias/aislamiento & purificación , Proteínas Nucleares/aislamiento & purificación , Interferencia de ARN , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA