Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nanotechnology ; 33(38)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700703

RESUMEN

In the present work we report a simple, fast, reproducible and cheap methodology for surface enhanced Raman spectroscopy (SERS) substrate fabrication of silver dendritic nanostructures (prepared by electrodeposition) decorated with gold nanospheres by electrophoretic deposition. This is the first report where a metal dendritic nanostructure has been decorated with another type of metal nanoparticles by this technique. The decorated nanostructures were used directly as SERS substrate using 4-aminothiophenol (4-ATP) as analyte. The objective of the decoration is to create more hot-spots in order to detect the analyte in a lower concentration. Decorated nanodendrites had a detection limit one million times lower than bare silver nanodendrites and all the substrates showed an increase in the Raman intensity at concentrations below 1 nM; because this concentration corresponds to the threshold for the formation of a monolayer resulting in a triple mechanism of intensity increase, namely electric field, chemical factor and hot-spots. 4-ATP was detected in attomolar concentration, which is below 1 ppq, corresponding to an analytical enhancement factor in the order of 1015.

2.
Nanotechnology ; 33(12)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34875636

RESUMEN

In the present work, we report a simple, fast, reproducible and cheap methodology for SERS substrate fabrication of silver dendritic nanostructures (prepared by electrodeposition) decorated with gold nanospheres by electrophoretic deposition. This is the first report where a metal dendritic nanostructure has been decorated with another type of metal nanoparticles by this technique. The decorated nanostructures were used directly as SERS substrate using 4-aminothiophenol (4-ATP) as analyte. The objective of the decoration is to create more hot-spots in order to detect the analyte in a lower concentration. Decorated nanodendrites had a detection limit one million times lower than bare silver nanodendrites and all the substrates showed an increase in the Raman intensity at concentrations below 1 nM; because this concentration corresponds to the threshold for the formation of a monolayer resulting in a triple mechanism of intensity increase, namely electric field, chemical factor and hot-spots. 4-ATP was detected in zeptomolar concentration, which is below 1 ppq, corresponding to an analytical enhancement factor in the order of 1015.

3.
Nanotechnology ; 31(46): 465605, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-32759478

RESUMEN

Plasmonic bimetallic Ag-Cu nanodendrites were synthesized by an electrodeposition process and their potential as surface-enhanced Raman scattering (SERS) substrates was studied. We demonstrated a facile and efficient way for the preparation of highly sensitive SERS substrates. The electrodeposition time was an important parameter in the formation of Ag-Cu dendrites onto the Al sheet. The Ag-Cu dendrites showed an excellent response detecting Rhodamine 6 G at ultra-low concentrations such as 1 × 10-15 mol l-1. This Ag-Cu substrate possesses an excellent SERS activity and it could be used for the detection of molecules at trace level. This electrodeposition process could be extended for the fabrication of other plasmonic bimetallic dendrites.

4.
Nanotechnology ; 31(42): 425601, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32575097

RESUMEN

Plasmonic superstructures may concentrate hot spots both on the external surface and within the inner gaps of the assembly. However, these materials are usually obtained by two-steps procedures from synthesis of plasmonic nanoparticles to their 3D assembly. The interconnected nano-network of water and oil channels in a bicontinuous microemulsion (BµE) may act as a preorganized reaction system giving reticulated materials. In this work, a silver hierarchical superstructure (HSS-AgCt) was obtained in the water channels of a BµE in a one-pot procedure. The characterization of the morphology and crystalline structure revealed that this superstructure is composed of silver nanoparticles embedded in polymeric silver citrate forming a 3D mesh of interconnected fibers with mean width of 30 nm. The aging of HSS-AgCt in the BµE allowed the degradation of the citrate fibers giving rise to interconnected spherical silver nanoparticles (HSS-Ag) of 8 nm as measured from TEM images. Rhodamine 6-G was detected by SERS up to 10-12 M with an analytical enhancement factor of 109 for both materials using a 633 nm laser operating at 0.85 mW (5% of the nominal power). These results introduce a novel route to obtain highly sensitive SERS substrates in one-pot procedures by using BµE as a nanoreactor and template.

5.
Phys Chem Chem Phys ; 22(40): 23276-23285, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33030486

RESUMEN

Ionic self-assembly is a simple yet powerful method to obtain robust nanostructures. Herewith, we use mixtures of oppositely-charged porphyrins that can act as mesogens to form chromonic liquid crystals in water, i.e., molecular stacks with orientational (nematic) or positional (hexagonal) order. Electrostatic locking coupled with π-π interactions between aromatic groups within the stacks, together with inter-stack hydrogen bonding induce formation of all-organic crystalline nanofibers with high aspect ratio (a few tenths of nanometers in width but several tenths of micrometers in length) and that display branching. The nanofibers prepared from metal-free porphyrin units feature interesting optical properties, including an absorption spectrum that is different from the simple sum of the individual spectra of the components, which is attributed to a striking aggregation-induced chromism. When in contact with some polar organic solvents the materials become fluorescent, as a result of disaggregation. In a proof-of-concept, the obtained self-assembled one-dimensional (1D) materials were carbonized (yield ca. 60%) to produce nitrogen-doped carbon nanofibers that can be used as active electrode materials for energy storage applications.

6.
J Environ Sci (China) ; 74: 32-49, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30340673

RESUMEN

During the winter period (January-March 2016), the total suspended particles (TSP) and particulate matter smaller than 2.5µm (PM2.5) were characterized by the application of various analytical techniques in four zones of the Metropolitan Area of Monterrey in Mexico. To evaluate the seasonal variation of some elements in the particulate matter, the results of this study were compared with those obtained during the summer season (July-September 2015). The speciation of the C1s signal by X-ray photoelectron spectroscopy revealed the contribution of aromatic and aliphatic hydrocarbons as the main components in both seasons. Conversely, carboxylic groups associated with biogenic emissions were detected only in winter. The percentages of SO42- ions were lower in winter, possibly caused by the decrease in the solar radiation, and relative humidity recorded. The results of the ICP analysis revealed that Fe, Zn and Cu were the most abundant metals in both TSP and PM2.5 in the two seasons. There were significant seasonal variations for concentrations of As, Ni and Zn in the urban area and for Fe, As, Cd, Ni and Zn in the industrial zone. This was attributed to the greater burning of fuels as well as to an increase in vehicular traffic, the effect of thermal inversion and changes in some meteorological parameters. The results of the sequential microanalysis by Raman spectroscopy and SEM/EDS allowed observation of deposits of carbonaceous material on the particles and to perform the speciation of particles rich in Fe and Pb, which helped infer their possible emission sources.


Asunto(s)
Monitoreo del Ambiente , Material Particulado/química , Estaciones del Año , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Espectrometría por Rayos X , Espectrometría Raman
7.
Langmuir ; 30(4): 1036-44, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24428551

RESUMEN

The increased levels of organic carbon in sewage wastewater during recent years impose a great challenge to the existing wastewater treatment process (WWTP). Technological innovations are therefore sought that can reduce the release of organic carbon into lakes and seas. In the present study, magnetic nanoparticles (NPs) were synthesized, functionalized with poly(ethylenimine) (PEI), and characterized using TEM (transmission electron microscopy), X-ray diffraction (XRD), FTIR (Fourier transform infrared spectroscopy), CCS (confocal correlation spectroscopy), SICS (scattering interference correlation spectroscopy), magnetism studies, and thermogravimetric analysis (TGA). The removal of total organic carbon (TOC) and other contaminants using PEI-coated magnetic nanoparticles (PEI-NPs) was tested in wastewater obtained from the Hammarby Sjöstadsverk sewage plant, Sweden. The synthesized NPs were about 12 nm in diameter and showed a homogeneous particle size distribution in dispersion by TEM and CCS analyses, respectively. The magnetization curve reveals superparamagnetic behavior, and the NPs do not reach saturation because of surface anisotropy effects. A 50% reduction in TOC was obtained in 60 min when using 20 mg/L PEI-NPs in 0.5 L of wastewater. Along with TOC, other contaminants such as turbidity (89%), color (86%), total nitrogen (24%), and microbial content (90%) were also removed without significant changes in the mineral ion composition of wastewater. We conclude that the application of PEI-NPs has the potential to reduce the processing time, complexity, sludge production, and use of additional chemicals in the WWTP.


Asunto(s)
Carbono/aislamiento & purificación , Nanopartículas de Magnetita/química , Compuestos Orgánicos/aislamiento & purificación , Polietileneimina/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/aislamiento & purificación , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
8.
Phys Chem Chem Phys ; 16(12): 5793-802, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24535212

RESUMEN

We report on structure-property relationships in Pr-doped CeO2 and ZrO2 using X-ray diffraction (XRD), Raman, UV to Vis Diffuse Reflectance (DR-UV/Vis), X-ray Photoelectron (XPS), and luminescence (PL) spectroscopies. Both 3+ and 4+ valence states of Pr are evidenced, irrespective of the host and calcination temperature, T (T = 500 and 1000 °C) with consequences on absorption, surface, vibrational and luminescence properties. Only zirconia represents a suitable host for Pr(3+) luminescence. The distinct trivalent Pr centers and their excitation mechanism are identified in relation to the tetragonal and monoclinic phases of ZrO2. A near-infrared to visible up-conversion (UPC) emission of Pr(3+) is observed upon excitation at 959 nm which occurs, most probably, via a two-photon excited state process. By using a multi-wavelength, time-gated excitation, the UPC process is established as phase selective, i.e. only Pr(3+) located in the monoclinic sites of the mixed phase, monoclinic and tetragonal ZrO2 (T = 1000 °C) contribute to the UPC emission. We believe that, besides the local symmetry, a key role in phase selective UPC is played by the presence of Pr(3+) low-lying 4f 5d levels. To the best of our knowledge, this is the first report of phase selective up-conversion emission in a lanthanide doped multi-phase host.

9.
Phys Chem Chem Phys ; 16(2): 703-10, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24263248

RESUMEN

Although homogeneity at the atomic level of CeO2-ZrO2 with a Ce/Zr atomic ratio close to unity is considered to be one of the main causes for the increased total oxygen storage capacity (OSC), the characterization approaches of homogeneity remain a major challenge. We propose a simple, yet effective method, to assess both structural and compositional homogeneity of CeO2-ZrO2 by using Eu(3+) luminescence measured with time and dual spectral resolution (emission and excitation). For Eu(3+)-CeO2-ZrO2 calcined at 750 °C, the X-ray diffraction, Raman and High-Resolution Transmission Electron Microscopy data converge to a single pseudo-cubic phase. However, the evolution of Eu(3+)-delayed luminescence from cubic ceria-like to tetragonal zirconia-like emission reveals the formation of CeO2- and ZrO2-rich nanodomains and provides evidence for early phase separation. For Eu(3+)-CeO2-ZrO2 calcined at 1000 °C, the emission of Eu(3+) reveals both structural and compositional inhomogeneity. Our study identifies the differences between the local structure properties of CeO2 and ZrO2 parent oxides and CeO2-ZrO2 mixed oxide, also confirming the special chemical environment of the oxygen atoms in the mixed oxide as reported earlier by Extended X-ray Absorption Fine Structure investigations.

10.
Gels ; 10(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38667640

RESUMEN

Developing gelled environmentally friendly dispersions in oil media is a hot topic for many applications. This study aimed to investigate the production of electrospun cellulose triacetate (CTA) nanofibers and to explore their potential application as a thickening agent for castor oil. The key factors in the electrospinning process, including the intrinsic properties of CTA solutions in methylene chloride (DCM)/ethanol (EtOH), such us the shear viscosity, surface tension, and electrical conductivity, were systematically studied. The impact of the CTA fiber concentration and the ratio of DCM/EtOH on the rheological properties of the gel-like dispersions in castor oil was then investigated. It was found that dispersions with a non-Newtonian response and above a critical concentration (5 wt.%), corresponding to approximately 2-2.5 times the entanglement concentration, are required to produce defect-free nanofibers. The average fiber diameter increased with CTA concentration. Further, the morphology and texture of the electrospun nanofibers are influenced by the ratio of solvents used. The rheological properties of dispersions are strongly influenced by the concentration and surface properties of nanofibers, such as their smooth or porous textures, which allow their modulation. Compared to other commonly used thickeners, such as synthetic polymers and metal soaps, CTA electrospun nanofibers have a much higher oil structuring capacity. This work illustrated the potential of using CTA nanofibers as the foundation for fabricating gel-like dispersions in oil media, and thus exerting hierarchical control of rheological properties through the use of a nanoscale fabrication technique.

11.
Polymers (Basel) ; 16(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276692

RESUMEN

The dip coating process is one of the recognized techniques used to generate polymeric coatings on stents in an easy and low-cost way. However, there is a lack of information about the influence of the process parameters of this technique on complex geometries such as stents. This paper studies the dip coating process parameters used to provide a uniform coating of PLA with a 4-10 µm thickness. A stainless-steel tube (AISI 316L) was laser-cut, electropolished, and dip-coated in a polylactic acid (PLA) solution whilst changing the process parameters. The samples were characterized to examine the coating's uniformity, thickness, surface roughness, weight, and chemical composition. FTIR and Raman investigations indicated the presence of PLA on the stent's surface, the chemical stability of PLA during the coating process, and the absence of residual chloroform in the coatings. Additionally, the water contact angle was measured to determine the hydrophilicity of the coating. Our results indicate that, when using entry and withdrawal speeds of 500 mm min-1 and a 15 s immersion time, a uniform coating thickness was achieved throughout the tube and in the stent with an average thickness of 7.8 µm.

12.
Langmuir ; 29(6): 1779-89, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23305179

RESUMEN

Phase behavior, dynamics, and structure of W/O microemulsions of the system aqueous solution/Synperonic 13_6.5/1-hexanol/isooctane were studied, with the goal of determining their effect on Mn-Zn ferrite nanoparticle formation, kinetics and characteristics. Microemulsion structure and dynamics were studied systematically by conductivity, dynamic light scattering (DLS), differential scanning calorimetry (DSC), and small-angle neutron scattering (SANS). The main effect of cosurfactant 1-hexanol was a decrease in microemulsion regions as compared to the systems without cosurfactant; nevertheless, overlap of microemulsion regions in the systems with precursor salts (PS) and precipitating agent (PA) was achieved at lower S/O ratios, compared to the system without cosurfactant. At 50 °C, PA microemulsions are nonpercolated, while PS microemulsions are percolated. SANS indicates small prolate ellipsoidal micelles with the absence of free water up to 18 wt % PS solution; DSC studies confirm the absence of free water in this composition range. Kinetic studies show an increase in the reaction rate with increasing concentration of the aqueous solution; but the most significant effect in reaction kinetics was noted when cosurfactant was used, regardless of microemulsion dynamics and structure. On the other hand, the main difference regarding the characteristics of the obtained nanoparticles was observed when bicontinuous microemulsions were used as reaction media which resulted in 8 nm nanoparticles, versus a constant size of ~4 nm obtained with all other microemulsions regardless of aqueous solution content, dynamics, and presence or absence of cosurfactant. The latter effect of constant size is attributed to the fact that the water present is dominantly bound to the EO units of the surfactant.


Asunto(s)
Nanopartículas/química , Óxidos/química , Óxidos/síntesis química , Técnicas de Química Sintética , Emulsiones , Compuestos Férricos/química , Hexanoles/química , Cinética , Manganeso/química , Tensoactivos/química , Zinc/química
13.
Water Res ; 231: 119608, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709564

RESUMEN

The use of surfactants represents a viable strategy to boost the removal yield of Dense Non-Aqueous Phase Liquids (DNAPLs) from groundwater and to shorten the operational timing of the remediation process. Surfactants, in general, help in reducing the interfacial tension at the DNAPL/water interface and enhance the solubility of the pollutant in the water phase through the formation of dispersed systems, such as micelles and emulsions. In this paper, we show that a suitable choice of a surfactant, in this case belonging to the bio-degradable class of ethoxylated alcohols, allows for the formation of hydrodynamic interfacial instabilities that further enhances the dissolution rate of the organic pollutant into the water phase. In a stratified configuration (denser organic phase at the bottom and lighter water phase on top), the instabilities appear as upward-pointing fingers that originate from the inversion of the local density at the interface. This inversion stems from the synergetic coupling of two effects promoted by the ethoxylated surfactant: i) the enhanced co-solubility of the DNAPL into the water (and viceversa), and (ii) the differential diffusion of the DNAPL and the surfactant in the aqueous phase. By dissolving into the DNAPL, the surfactant also reduces locally the surface tension at the liquid-liquid interface, thereby inducing transversal Marangoni flows. In our work, we carefully evaluated the effects of the concentration of different surfactants (two different ethoxylated alcohols, sodium dodecylsulphate, cetyltrimethyl ammonium bromide, N-tetradecyl-N, N-dimethylamine oxide and bis(2-ethylhexyl) sulfosuccinate sodium salt) on the onset of the instabilities in 3 different DNAPLs/water stratifications, namely chloroform, trichloroethylene and tetrachloroethylene, with a special emphasis on the trichloroethylene/water system. By means of a theoretical model and nonlinear simulations, supported by surface tension, density and diffusivity measurements, we could provide a solid explanation to the observed phenomena and we found that the type of the dispersed system, the solubility of the DNAPL into the water phase, the solubility of the surfactant in the organic phase, as well as the relative diffusion and density of the surfactant and the DNAPL in the aqueous phase, are all key parameters for the onset of the instabilities. These results can be exploited in the most common remediation techniques.


Asunto(s)
Tricloroetileno , Contaminantes Químicos del Agua , Solubilidad , Contaminantes Químicos del Agua/análisis , Alcoholes , Tensoactivos , Sodio
14.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37688159

RESUMEN

Using cytotoxic reducing and stabilizing agents in the synthesis of gold nanoparticles (AuNPs) limits their use in biomedical applications. One strategy to overcome this problem is using "green" synthesis methodologies using polysaccharides. In the present study, we propose a green methodology for synthetizing AuNPs with mesquite gum (MG) as a reducing agent and steric stabilizer in Gold(III) chloride trihydrate aqueous solutions to obtain biocompatible nanoparticles that can be used for biomedical applications. Through this method, AuNPs can be produced without using elevated temperatures or pressures. For synthetizing gold nanoparticles coated with mesquite gum (AuNPs@MG), Gold(III) chloride trihydrate was used as a precursor, and mesquite gum was used as a stabilizing and reducing agent. The AuNPs obtained were characterized using UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, scanning transmission electron microscopy, and FT-IR spectroscopy. The stability in biological media (phosphate buffer solution), cytotoxicity (MTT assay, hematoxylin, and eosin staining), and hemocompatibility (Hemolysis assay) were measured at different concentrations and exposure times. The results showed the successful synthesis of AuNPs@MG with sizes ranging from 3 to 30 nm and a zeta potential of -31 mV. The AuNPs@MG showed good colloidal stability in PBS (pH 7.4) for up to 24 h. Finally, cytotoxicity assays showed no changes in cell metabolism or cell morphology. These results suggest that these gold nanoparticles have potential biomedical applications because of their low cytotoxicity and hemotoxicity and improved stability at a physiological pH.

15.
Nanomaterials (Basel) ; 13(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887952

RESUMEN

Myc and Max are essential proteins in the development of prostate cancer. They act by dimerizing and binding to E-box sequences. Disrupting the Myc:Max heterodimer interaction or its binding to E-box sequences to interrupt gene transcription represent promising strategies for treating cancer. We designed novel pMyc and pMax peptides from reference sequences, and we evaluated their ability to bind specifically to E-box sequences using an electrophoretic mobility shift assay (EMSA). Then, we assembled nanosystems (NSs) by coupling pMyc and pMax peptides to AuNPs, and determined peptide conjugation using UV-Vis spectroscopy. After that, we characterized the NS to obtain the nanoparticle's size, hydrodynamic diameter, and zeta potential. Finally, we evaluated hemocompatibility and cytotoxic effects in three different prostate adenocarcinoma cell lines (LNCaP, PC-3, and DU145) and a non-cancerous cell line (Vero CCL-81). EMSA results suggests peptide-nucleic acid interactions between the pMyc:pMax dimer and the E-box. The hemolysis test showed little hemolytic activity for the NS at the concentrations (5, 0.5, and 0.05 ng/µL) we evaluated. Cell viability assays showed NS cytotoxicity. Overall, results suggest that the NS with pMyc and pMax peptides might be suitable for further research regarding Myc-driven prostate adenocarcinomas.

16.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37177048

RESUMEN

With the growing population, access to clean water is one of the 21st-century world's challenges. For this reason, different strategies to reduce pollutants in water using renewable energy sources should be exploited. Photocatalysts with extended visible light harvesting are an interesting route to degrade harmful molecules utilized in plastics, as is the case of Bisphenol A (BPA). This work uses a microwave-assisted route for the synthesis of two photocatalysts (BiOI and Bi2MoO6). Then, BiOI/Bi2MoO6 heterostructures of varied ratios were produced using the same synthetic routes. The BiOI/Bi2MoO6 with a flower-like shape exhibited high photocatalytic activity for BPA degradation compared to the individual BiOI and Bi2MoO6. The high photocatalytic activity was attributed to the matching electronic band structures and the interfacial contact between BiOI and Bi2MoO6, which could enhance the separation of photo-generated charges. Electrochemical, optical, structural, and chemical characterization demonstrated that it forms a BiOI/Bi2MoO6 p-n heterojunction. The free radical scavenging studies showed that superoxide radicals (O2•-) and holes (h+) were the main reactive species, while hydroxyl radical (•OH) generation was negligible during the photocatalytic degradation of BPA. The results can potentiate the application of the microwave synthesis of photocatalytic materials.

17.
Langmuir ; 28(22): 8479-85, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22578053

RESUMEN

Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.


Asunto(s)
Compuestos Férricos/química , Nanopartículas de Magnetita/química , Moringa oleifera/química , Proteínas de Plantas/química , Semillas/química , Adsorción , Silicatos de Aluminio/química , Arcilla , Emulsiones , Nanopartículas de Magnetita/ultraestructura , Magnetometría , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Unión Proteica , Espectrometría de Fluorescencia , Agua , Difracción de Rayos X
18.
Phys Chem Chem Phys ; 14(37): 12970-81, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22903237

RESUMEN

Pure and europium (Eu(3+)) doped ZrO(2) synthesized by an oil-in-water microemulsion reaction method were investigated by in situ and ex situ X-ray diffraction (XRD), ex situ Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), steady state and time-resolved photoluminescence (PL) spectroscopies. Based on the Raman spectra excited at three different wavelengths i.e. 488, 514 and 633 nm and measured in the spectral range of 150-4000 cm(-1) the correlation between the phonon spectra of ZrO(2) and luminescence of europium is clearly evidenced. The PL investigations span a variety of steady-state and time resolved measurements recorded either after direct excitation of the Eu(3+) f-f transitions or indirect excitation into UV charge-transfer bands. After annealing at 500 °C, the overall Eu(3+) emission is dominated by Eu(3+) located in tetragonal symmetry lattice sites with a crystal-field splitting of the (5)D(0)-(7)F(1) emission of 20 cm(-1). Annealing of ZrO(2) at 1000 °C leads to a superposition of Eu(3+) emissions from tetragonal and monoclinic lattice sites with monoclinic crystal-field splitting of 200 cm(-1) for the (5)D(0)-(7)F(1) transition. At all temperatures, a non-negligible amorphous/disordered content is also measured and determined to be of monoclinic nature. It was found that the evolutions with calcination temperature of the average PL lifetimes corresponding to europium emission in the tetragonal and monoclinic sites and the monoclinic phase content of the Eu(3+) doped ZrO(2) samples follow a similar trend. By use of specific excitation conditions, the distribution of europium on the amorphous/disordered surface or ordered/crystalline sites can be identified and related to the phase content of zirconia. The role of zirconia host as a sensitizer for the europium PL is also discussed in both tetragonal and monoclinic phases.


Asunto(s)
Circonio/química , Europio/química , Mediciones Luminiscentes , Nanotecnología , Espectrometría Raman , Temperatura
19.
Langmuir ; 27(23): 14005-13, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22039992

RESUMEN

In this work, the formation of water-in-oil (w/o) microemulsions with high aqueous phase uptake in a nonionic surfactant system is investigated as potential media for the synthesis of Mn-Zn ferrite nanoparticles. A comprehensive study based on the phase behavior of systems containing precursor salts, on one hand, and precipitating agent, on the other hand, was carried out to identify key regions on (a) pseudoternary phase diagrams at constant temperature (50 °C), and (b) pseudobinary phase diagrams at constant surfactant (S):oil(O) weight ratio (S:O) as a function of temperature. The internal structure and dynamics of microemulsions were studied systematically by conductivity and self-diffusion coefficient determinations (FT PGSE (1)H NMR). It was found that nonpercolated w/o microemulsions could be obtained by appropriate tuning of composition variables and temperature, with aqueous phase concentrations as high as 36 wt % for precursor salts and 25 wt % for precipitating agent systems. Three compositions with three different dynamic behaviors (nonpercolated and percolated w/o, as well as bicontinuous microemulsions) were selected for the synthesis of Mn-Zn ferrites, resulting in nanoparticles with different characteristics. Spinel structure and superparamagnetic behavior were obtained. This study sets firm basis for a systematic study of Mn-Zn ferrite nanoparticle synthesis via different scenarios of microemulsion dynamics, which will contribute to a better understanding on the relationship of the characteristics of the obtained materials with the properties of the reaction media.


Asunto(s)
Compuestos Férricos/química , Manganeso/química , Nanopartículas/química , Aceites/química , Zinc/química , Emulsiones/química , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
20.
Phys Chem Chem Phys ; 13(38): 17135-45, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21869965

RESUMEN

Pure and europium (Eu(3+)) doped cerium dioxide (CeO(2)) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of ~250 m(2) g(-1). Only a small fraction of the europium ions substitutes for the bulk, cubic Ce(4+) sites in the europium-doped ceria nanocrystals. Upon calcination up to 1000 °C, a remarkable high surface area of ~120 m(2) g(-1) is preserved whereas an enrichment of the surface Ce(4+) relative to Ce(3+) ions and relative strong europium emission with a lifetime of ~1.8 ms and FWHM as narrow as 10 cm(-1) are measured. Under excitation into the UV and visible spectral range, the europium doped ceria nanocrystals display a variable emission spanning the orange-red wavelengths. The tunable emission is explained by the heterogeneous distribution of the europium dopants within the ceria nanocrystals coupled with the progressive diffusion of the europium ions from the surface to the inner ceria sites and the selective participation of the ceria host to the emission sensitization. Effects of the bulk-doping and impregnation with europium on the ceria host structure and optical properties are also discussed.


Asunto(s)
Cerio/química , Emulsiones/química , Europio/química , Sustancias Luminiscentes/química , Nanopartículas/química , Sustancias Luminiscentes/síntesis química , Nanopartículas/ultraestructura , Nanotecnología/métodos , Aceites/química , Espectrometría Raman , Agua/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA