Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Gut ; 66(4): 666-682, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27965283

RESUMEN

OBJECTIVE: Understand the role of ZEB1 in the tumour initiation and progression beyond inducing an epithelial-to-mesenchymal transition. DESIGN: Expression of the transcription factor ZEB1 associates with a worse prognosis in most cancers, including colorectal carcinomas (CRCs). The study uses survival analysis, in vivo mouse transgenic and xenograft models, gene expression arrays, immunostaining and gene and protein regulation assays. RESULTS: The poorer survival determined by ZEB1 in CRCs depended on simultaneous high levels of the Wnt antagonist DKK1, whose expression was transcriptionally activated by ZEB1. In cancer cells with mutant TP53, ZEB1 blocked the formation of senescence-associated heterochromatin foci at the onset of senescence by triggering a new regulatory cascade that involves the subsequent activation of DKK1, mutant p53, Mdm2 and CtBP to ultimately repress macroH2A1 (H2AFY). In a transgenic mouse model of colon cancer, partial downregulation of Zeb1 was sufficient to induce H2afy and to trigger in vivo tumour senescence, thus resulting in reduced tumour load and improved survival. The capacity of ZEB1 to induce tumourigenesis in a xenograft mouse model requires the repression of H2AFY by ZEB1. Lastly, the worst survival effect of ZEB1 in patients with CRC ultimately depends on low expression of H2AFY and of senescence-associated genes. CONCLUSIONS: The tumourigenic capacity of ZEB1 depends on its inhibition of cancer cell senescence through the activation of a herein identified new molecular pathway. These results set ZEB1 as a potential target in therapeutic strategies aimed at inducing senescence.


Asunto(s)
Carcinogénesis/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Histonas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Senescencia Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Transgénicos , Mutación , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Tasa de Supervivencia , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
2.
J Biol Chem ; 289(7): 4116-25, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24371144

RESUMEN

Ras mutations are frequent in cancer cells where they drive proliferation and resistance to apoptosis. However in primary cells, mutant Ras instead can cause oncogene-induced senescence, a tumor suppressor function linked to repression of the polycomb factor Bmi1, which normally regulates cell cycle inhibitory cyclin-dependent kinase inhibitors (cdki). It is unclear how Ras causes repression of Bmi1 in primary cells to suppress tumor formation while inducing the gene in cancer cells to drive tumor progression. Ras also induces the EMT transcription factor ZEB1 to trigger tumor invasion and metastasis. Beyond its well-documented role in EMT, ZEB1 is important for maintaining repression of cdki. Indeed, heterozygous mutation of ZEB1 is sufficient for elevated cdki expression, leading to premature senescence of primary cells. A similar phenotype is evident with Bmi1 mutation. We show that activation of Rb1 in response to mutant Ras causes dominant repression of ZEB1 in primary cells, but loss of the Rb1 pathway is a hallmark of cancer cells and in the absence of such Rb1 repression Ras induces ZEB1 in cancer cells. ZEB1 represses miR-200 in the context of a mutual repression loop. Because miR-200 represses Bmi1, induction of ZEB1 leads to induction of Bmi1. Rb1 pathway status then dictates the opposing effects of mutant Ras on the ZEB1-miR-200 loop in primary versus cancer cells. This loop not only triggers EMT, surprisingly we show it acts downstream of Ras to regulate Bmi1 expression and thus the critical decision between oncogene-induced senescence and tumor initiation.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Neoplasias/metabolismo , Proteína Oncogénica p21(ras)/biosíntesis , Complejo Represivo Polycomb 1/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , ARN Neoplásico/metabolismo , Proteína de Retinoblastoma/biosíntesis , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Senescencia Celular/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , MicroARNs/genética , Mutación , Neoplasias/genética , Neoplasias/patología , Proteína Oncogénica p21(ras)/genética , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , ARN Neoplásico/genética , Proteína de Retinoblastoma/genética , Factores de Transcripción/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
3.
J Biol Chem ; 288(16): 11572-80, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23443660

RESUMEN

Rb1 restricts cell cycle progression, and it imposes cell contact inhibition to suppress tumor outgrowth. It also triggers oncogene-induced senescence to block Ras mutation. Loss of the Rb1 pathway, which is a hallmark of cancer cells, then provides a permissive environment for Ras mutation, and Ras is sufficient for invasive tumor formation in Rb1 family mutant mouse embryo fibroblasts (MEFs). These results demonstrate that sequential mutation of the Rb1 and Ras pathways comprises a tumor initiation axis. Both Rb1 and Ras regulate expression of the transcription factor ZEB1, thereby linking tumor initiation to the subsequent invasion and metastasis, which is induced by ZEB1. ZEB1 acts in a negative feedback loop to block expression of miR-200, which is thought to facilitate tumor invasion and metastasis. However, ZEB1 also represses cyclin-dependent kinase (cdk) inhibitors to control the cell cycle; its mutation in MEFs leads to induction of these inhibitors and premature senescence. Here, we provide evidence for two sequential inductions of ZEB1 during Ras transformation of MEFs. Rb1 constitutively represses cdk inhibitors, and induction of ZEB1 when the Rb1 pathway is lost is required to maintain this repression, allowing for the classic immortalization and loss of cell contact inhibition seen when the Rb1 pathway is lost. In vivo, we show that this induction of ZEB1 is required for Ras-initiated tumor formation. ZEB1 is then further induced by Ras, beyond the level seen with Rb1 mutation, and this Ras superinduction is required to reach a threshold of ZEB1 sufficient for repression of miR-200 and tumor invasion.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación , Neoplasias/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas ras/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Senescencia Celular/genética , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , MicroARNs/biosíntesis , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/patología , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Proteína de Retinoblastoma/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Proteínas ras/genética
4.
Proc Natl Acad Sci U S A ; 108(48): 19204-9, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22080605

RESUMEN

In most carcinomas, invasion of malignant cells into surrounding tissues involves their molecular reprogramming as part of an epithelial-to-mesenchymal transition (EMT). Mutation of the APC gene in most colorectal carcinomas (CRCs) contributes to the nuclear translocation of the oncoprotein ß-catenin that upon binding to T-cell and lymphoid enhancer (TCF-LEF) factors triggers an EMT and a proinvasive gene expression profile. A key inducer of EMT is the ZEB1 transcription factor whose expression promotes tumorigenesis and metastasis in carcinomas. As inhibitor of the epithelial phenotype, ZEB1 is never present in the epithelium of normal colon or the tumor center of CRCs where ß-catenin remains membranous. We show here that ZEB1 is expressed by epithelial cells in intestinal tumors from human patients (familial adenomatous polyposis) and mouse models (APC(Min/+)) with germline mutations of APC that result in nuclear accumulation of ß-catenin. However, ZEB1 is not expressed in the epithelium of hereditary forms of CRCs that carry wild-type APC and where ß-catenin is excluded from the nucleus (Lynch syndrome). We found that ß-catenin/TCF4 binds directly to the ZEB1 promoter and activates its transcription. Knockdown of ß-catenin and TCF4 in APC-mutated CRC cells inhibited endogenous ZEB1, whereas forced translocation of ß-catenin to the nucleus in APC-wild-type CRC cells induced de novo expression of ZEB1. Upregulation of MT1-MMP and LAMC2 by ß-catenin/TCF4 has been linked to invasiveness in CRCs, and we show here that both proteins are activated by ZEB1 coexpressing with it in primary colorectal tumors with mutated APC. These results set ZEB1 as an effector of ß-catenin/TCF4 signaling in EMT and tumor progression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Complejos Multiproteicos/metabolismo , Invasividad Neoplásica/fisiopatología , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Ratones , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Factor de Transcripción 4 , Factores de Transcripción/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , beta Catenina/genética
5.
Cell Mol Life Sci ; 69(20): 3429-56, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22945800

RESUMEN

Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Transformación Celular Neoplásica/patología , Transición Epitelial-Mesenquimal , Neoplasias/metabolismo , Neoplasias/patología , Animales , Humanos , Ratones , Invasividad Neoplásica
6.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870961

RESUMEN

Despite being in the same pathway, mutations of KRAS and BRAF in colorectal carcinomas (CRCs) determine distinct progression courses. ZEB1 induces an epithelial-to-mesenchymal transition (EMT) and is associated with worse progression in most carcinomas. Using samples from patients with CRC, mouse models of KrasG12D and BrafV600E CRC, and a Zeb1-deficient mouse, we show that ZEB1 had opposite functions in KRAS- and BRAF-mutant CRCs. In KrasG12D CRCs, ZEB1 was correlated with a worse prognosis and a higher number of larger and undifferentiated (mesenchymal or EMT-like) tumors. Surprisingly, in BrafV600E CRC, ZEB1 was associated with better prognosis; fewer, smaller, and more differentiated (reduced EMT) primary tumors; and fewer metastases. ZEB1 was positively correlated in KRAS-mutant CRC cells and negatively in BRAF-mutant CRC cells with gene signatures for EMT, cell proliferation and survival, and ERK signaling. On a mechanistic level, ZEB1 knockdown in KRAS-mutant CRC cells increased apoptosis and reduced clonogenicity and anchorage-independent growth; the reverse occurred in BRAFV600E CRC cells. ZEB1 is associated with better prognosis and reduced EMT signature in patients harboring BRAF CRCs. These data suggest that ZEB1 can function as a tumor suppressor in BRAF-mutant CRCs, highlighting the importance of considering the KRAS/BRAF mutational background of CRCs in therapeutic strategies targeting ZEB1/EMT.


Asunto(s)
Carcinoma , Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Animales , Humanos , Ratones , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
7.
Biochem J ; 427(3): 541-50, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20175752

RESUMEN

BCL6 is essential for normal antibody responses and is highly expressed in germinal centre B-cells. Constitutive expression due to chromosomal translocations or mutations of cis-acting regulatory elements contributes to diffuse large B-cell lymphoma. BCL6 expression is therefore tightly regulated in a lineage- and developmental-stage-specific manner, and disruption of normal controls can contribute to lymphomagenesis. In order to discover potential cis-acting control regions we carried out DNase I-hypersensitive site mapping. Gel-shift assays and chromatin immunoprecipitation of the core region of a hypersensitive site 4.4 kb upstream of BCL6 transcription initiation (HSS-4.4) showed an E-box element-binding ZEB1 (zinc finger E-boxbinding homeobox 1) and the co-repressor CtBP (C-terminal binding protein). As compared with peripheral blood B-cells, ZEB1, a two-handed zinc finger transcriptional repressor, is expressed at relatively low levels in germinal centre cells, whereas BCL6 has the opposite pattern of expression. Transfection of ZEB1 cDNA caused a reduction in BCL6 expression and a mutated ZEB1, incapable of binding CtBP, lacked this effect. siRNA (small interfering RNA)-mediated knockdown of ZEB1 or CtBP produced an increase in BCL6 mRNA. We propose that HSS-4.4 is a distal promoter element binding a repressive complex consisting of ZEB1 and CtBP. CtBP is ubiquitously expressed and the results of the present study suggest that regulation of ZEB1 is required for control of BCL6 expression.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Oxidorreductasas de Alcohol/genética , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Proteínas de Homeodominio/genética , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-bcl-6 , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
8.
Immunobiology ; 226(5): 152114, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303919

RESUMEN

The induction of major histocompatibility complex (MHC) class II proteins by interferon gamma (IFN-γ) in macrophages play an important role during immune responses. Here we explore the signaling pathways involved in the induction by IFN-γ of the MHC II transactivator (CIIta) required for MHC II transcriptional activation. Cyclophilin A (CypA) is required for IFN-γ-dependent induction of MHC II in macrophages, but not when it is mediated by GM-CSF. The effect of CypA appears to be specific because it does not affect the expression of other molecules or genes triggered by IFN-γ, such as FcγR, NOS2, Lmp2, and Tap1. We found that CypA inhibition blocked the IFN-γ-induced expression of CIIta at the transcriptional level in two phases. In an early phase, during the first 2 h of IFN-γ treatment, STAT1 is phosphorylated at Tyrosine 701 and Serine 727, residues required for the induction of the transcription factor IRF1. In a later phase, STAT1 phosphorylation and JNK activation are required to trigger CIIta expression. CypA is needed for STAT1 phosphorylation in this last phase and to bind the CIIta promoter. Our findings demonstrate that STAT1 is required in a two-step induction of CIIta, once again highlighting the significance of cross talk between signaling pathways in macrophages.


Asunto(s)
Interferón gamma/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Quinasas Janus/inmunología , Proteínas Nucleares/inmunología , Factor de Transcripción STAT1/inmunología , Transactivadores/inmunología , Animales , Línea Celular , Ciclosporina/farmacología , Lactonas/farmacología , Ratones Endogámicos BALB C , Proteínas Nucleares/genética , Compuestos de Espiro/farmacología , Transactivadores/genética
9.
Eur J Immunol ; 39(7): 1902-13, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19585511

RESUMEN

MAPK phosphatase-1 (MKP-1) is a protein phosphatase that plays a crucial role in innate immunity. This phosphatase inactivates ERK1/2, which are involved in two opposite functional activities of the macrophage, namely proliferation and activation. Here we found that although macrophage proliferation and activation induce MKP-1 with different kinetics, gene expression is mediated by the proximal promoter sequences localized between -380 and -180 bp. Mutagenesis experiments of the proximal element determined that CRE/AP-1 is required for LPS- or M-CSF-induced activation of the MKP-1 gene. Moreover, the results from gel shift analysis and chromatin immunoprecipitation indicated that c-Jun and CREB bind to the CRE/AP-1 box. The distinct kinetics shown by M-CSF and LPS correlates with the induction of JNK and c-jun, as well as the requirement for Raf-1. The signal transduction pathways that activate the induction of MKP-1 correlate kinetically with induction by M-CSF and LPS.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Lipopolisacáridos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Animales , Sitios de Unión , Western Blotting , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Fosfatasa 1 de Especificidad Dual/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cinética , Activación de Macrófagos/efectos de los fármacos , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
10.
Blood ; 112(8): 3274-82, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18682602

RESUMEN

Macrophages have the capacity to proliferate in response to specific growth factors, such as macrophage-colony stimulating factor (M-CSF). In the presence of several cytokines and activating factors, macrophages undergo growth arrest, become activated, and participate in the development of an immune response. We have previously observed that activation of extracellularly regulated kinase 1/2 (ERK-1/2) is required for macrophage proliferation in response to growth factors. A short and early pattern of ERK activity correlated with the proliferative response. In contrast, slightly prolonged patterns of activity of these kinases were induced by signals that lead to macrophage activation and growth arrest. IFN-gamma is the main endogenous Th1-type macrophage activator. Here we report that stimulation with IFN-gamma prolongs the pattern of ERK activity induced by M-CSF in macrophages. These effects correlate with IFN-gamma-mediated inhibition of the expression of several members of the MAPK phosphatase family, namely MKP-1, -2, and -4. Moreover, inhibition of MKP-1 expression using siRNA technology or synthetic inhibitors also led to elongated ERK activity and significant blockage of M-CSF-dependent proliferation. These data suggest that subtle changes in the time course of activity of members of the MAPK family contribute to the antiproliferative effects of IFN-gamma in macrophages.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/biosíntesis , Regulación Enzimológica de la Expresión Génica , Interferón gamma/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/enzimología , Animales , Células de la Médula Ósea/citología , Proteínas de Ciclo Celular , Proliferación Celular , Activación de Macrófagos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Fenotipo , Transducción de Señal
11.
Mol Immunol ; 46(4): 743-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18996597

RESUMEN

Macrophages that react against pathogenic organisms can also be activated with artificial nanometric units consisting of gold nanoparticles (Au NPs) with a peptide coating. Using bone marrow-derived macrophages, here we show that these cells have the capacity to recognize Au NPs once conjugated to two biomedically relevant peptides, the amyloid growth inhibitory peptide (AGIP) and the sweet arrow peptide (SAP), while they do not recognize peptides or NPs alone. The recognition of these conjugates by macrophages is mediated by a pattern recognition receptor, the TLR-4. Consequently, pro-inflammatory cytokines such as TNF-alpha, IL-1 beta and IL-6, as well as nitric oxide synthase were induced and macrophage proliferation was stopped when exposed to the peptide-conjugated Au NPs. Contamination by lipopolysaccharide in our experimental system was excluded. Furthermore, macrophage activation appeared to be independent of peptide length and polarity. As a result of macrophage activation, conjugated Au NPs were internalized and processed. These results open up a new avenue in the world of adjuvants and illustrate the basic requirements for the design of NP conjugates that efficiently reach their target.


Asunto(s)
Oro/farmacología , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Nanopartículas del Metal , Péptidos/farmacología , Adyuvantes Inmunológicos , Animales , Proliferación Celular/efectos de los fármacos , Oro/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Microscopía Electrónica de Transmisión , Péptidos/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
12.
Structure ; 15(4): 473-83, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17437719

RESUMEN

In this work, we study the role of phosphorylation as a regulatory mechanism for the interaction between the E3 ubiquitin ligase ItchWW3 domain and two PPxY motifs of one of its targets, the Epstein-Barr virus latent membrane protein 2A. Whereas ligand phosphorylation only diminishes binding, domain phosphorylation at residue T30 abrogates it. We show that two ItchWW domains can be phosphorylated at this position, using CK2 and PKA kinases and/or with stimulated T lymphocyte lysates. To better understand the regulation process, we determined the NMR structures of the ItchWW3-PPxY complex and of the phosphoT30-ItchWW3 variant. The peptide binds the domain using both XP and tyrosine grooves. A hydrogen bond from T30 to the ligand is also detected. This hydrogen-bond formation is precluded in the variant, explaining the inhibition upon phosphorylation. Our results suggest that phosphorylation at position 30 in ItchWW domains can be a mechanism to inhibit target recognition in vivo.


Asunto(s)
Espectroscopía de Resonancia Magnética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Ligandos , Ratones , Fosforilación , Estructura Terciaria de Proteína
13.
Mol Cell Biol ; 33(7): 1368-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23339872

RESUMEN

Skeletal muscle development is orchestrated by the myogenic regulatory factor MyoD, whose activity is blocked in myoblasts by proteins preventing its nuclear translocation and/or binding to G/C-centered E-boxes in target genes. Recent evidence indicates that muscle gene expression is also regulated at the cis level by differential affinity for DNA between MyoD and other E-box binding proteins during myogenesis. MyoD binds to G/C-centered E-boxes, enriched in muscle differentiation genes, in myotubes but not in myoblasts. Here, we used cell-based and in vivo Drosophila, Xenopus laevis, and mouse models to show that ZEB1, a G/C-centered E-box binding transcriptional repressor, imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression. We found that, contrary to MyoD, ZEB1 binds to G/C-centered E-boxes in muscle differentiation genes at the myoblast stage but not in myotubes. Its knockdown results in precocious expression of muscle differentiation genes and acceleration of myotube formation. Inhibition of muscle genes by ZEB1 occurs via transcriptional repression and involves recruitment of the CtBP corepressor. Lastly, we show that the pattern of gene expression associated with muscle differentiation is accelerated in ZEB1(-/-) mouse embryos. These results set ZEB1 as an important regulator of the temporal pattern of gene expression controlling muscle differentiation.


Asunto(s)
Diferenciación Celular/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción de Tipo Kruppel/genética , Músculo Esquelético/fisiología , Activación Transcripcional , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos E-Box , Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Xenopus laevis , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
14.
Clin Cancer Res ; 19(5): 1071-82, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23340304

RESUMEN

PURPOSE: Carcinoma cells enhance their invasive capacity through dedifferentiation and dissolution of intercellular adhesions. A key activator of this process is the ZEB1 transcription factor, which is induced in invading cancer cells by canonical Wnt signaling (ß-catenin/TCF4). Tumor invasiveness also entails proteolytic remodeling of the peritumoral stroma. This study aimed to investigate the potential regulation by ZEB1 of the plasminogen proteolytic system constituted by the urokinase plasminogen activator (uPA), and its inhibitor, plasminogen activator inhibitor-1 (PAI-1). EXPERIMENTAL DESIGN: Through multiple experimental approaches, colorectal carcinoma (CRC) cell lines and samples from human primary CRC and ZEB1 (-/-) mice were used to examine ZEB1-mediated regulation of uPA and PAI-1 at the protein, mRNA, and transcriptional level. RESULTS: ZEB1 regulates uPA and PAI-1 in opposite directions: induces uPA and inhibits PAI-1. In vivo expression of uPA depends on ZEB1 as it is severely reduced in the developing intestine of ZEB1 null (-/-) mice. Optimal induction of uPA by Wnt signaling requires ZEB1 expression. ZEB1 binds to the uPA promoter and activates its transcription through a mechanism implicating the histone acetyltransferase p300. In contrast, inhibition of PAI-1 by ZEB1 does not involve transcriptional repression but rather downregulation of mRNA stability. ZEB1-mediated tumor cell migration and invasion depend on its induction of uPA. ZEB1 coexpresses with uPA in cancer cells at the invasive front of CRCs. CONCLUSIONS: ZEB1 promotes tumor invasiveness not only via induction in cancer cells of a motile dedifferentiated phenotype but also by differential regulation of genes involved in stroma remodeling.


Asunto(s)
Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Western Blotting , Movimiento Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Invasividad Neoplásica , Inhibidor 1 de Activador Plasminogénico/genética , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
15.
Nat Commun ; 4: 2650, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24150016

RESUMEN

It is thought that genomic instability precipitated by Rb1 pathway loss rapidly triggers additional cancer gene mutations, accounting for rapid tumour onset following Rb1 mutation. However, recent whole-genome sequencing of retinoblastomas demonstrated little genomic instability, but instead suggested rapid epigenetic activation of cancer genes. These results raise the possibility that loss of the Rb1 pathway, which is a hallmark of cancers, might be sufficient for cancer initiation. Yet, mutation of the Rb1 family or inactivation of the Rb1 pathway in primary cells has proven insufficient for tumour initiation. Here we demonstrate that traditional nude mouse assays impose an artificial anoikis and proliferation barrier that prevents Rb1 family mutant fibroblasts from initiating tumours. By circumventing this barrier, we show that primary fibroblasts with only an Rb1 family mutation efficiently form sarcomas in nude mice, and a Ras-ZEB1-Akt pathway then causes transition of these tumours to an invasive phenotype.


Asunto(s)
Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Proteína de Retinoblastoma/genética , Sarcoma Experimental/genética , Neoplasias Cutáneas/genética , Animales , Anoicis , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Desnudos , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína de Retinoblastoma/metabolismo , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patología , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Proteínas ras/genética , Proteínas ras/metabolismo
16.
Am J Cancer Res ; 1(7): 897-912, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016835

RESUMEN

The ZEB family of transcription factors regulates key factors during embryonic development and cell differentiation but their role in cancer biology has only more recently begun to be recognized. Early evidence showed that ZEB proteins induce an epithelial-to-mesenchymal transition linking their expression with increased aggressiveness and metastasis in mice models and a wide range of primary human carcinomas. Reports over the last few years have found that ZEB proteins also play critical roles in the maintenance of cancer cell stemness, control of replicative senescence, tumor angiogenesis, overcoming of oncogenic addiction and resistance to chemotherapy. These expanding roles in tumorigenesis and tumor progression set ZEB proteins as potential diagnostic, prognostic and therapeutic targets.

17.
ACS Nano ; 3(6): 1335-44, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19489561

RESUMEN

Murine bone marrow macrophages were able to recognize gold nanoparticle peptide conjugates, while peptides or nanoparticles alone were not recognized. Consequently, in the presence of conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines such as TNF-alpha, IL-1beta, and IL-6, as well as nitric oxide synthase (NOS2) were induced. Furthermore, macrophage activation by gold nanoparticles conjugated to different peptides appeared to be rather independent of peptide length and polarity, but dependent on peptide pattern at the nanoparticle surface. Correspondingly, the biochemical type of response also depended on the type of conjugated peptide and could be correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical nanoparticle conjugate design to either activate the immune system or hide from it in order to reach their targets before being removed by phagocytes.


Asunto(s)
Oro/química , Macrófagos/citología , Nanopartículas del Metal , Péptidos/química , Citocinas/metabolismo , Macrófagos/metabolismo
18.
J Immunol ; 180(7): 4523-9, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18354174

RESUMEN

Macrophages perform essential functions in the infection and resolution of inflammation. IFN-gamma is the main endogenous macrophage Th1 type activator. The classical IFN-gamma signaling pathway involves activation of Stat-1. However, IFN-gamma has also the capability to activate members of the MAPK family. In primary bone marrow-derived macrophages, we have observed strong activation of p38 at early time points of IFN-gamma stimulation, whereas weak activation of ERK-1/2 and JNK-1 was detected at a more delayed stage. In parallel, IFN-gamma exerted repressive effects on the expression of a number of MAPK phosphatases. By using selective inhibitors and knockout models, we have explored the contributions of MAPK activation to the macrophage response to IFN-gamma. Our findings indicate that these kinases regulate IFN-gamma-mediated gene expression in a rather selective way: p38 participates mainly in the regulation of the expression of genes required for the innate immune response, including chemokines such as CCL5, CXCL9, and CXCL10; cytokines such as TNF-alpha; and inducible NO synthase, whereas JNK-1 acts on genes involved in Ag presentation, including CIITA and genes encoding MHC class II molecules. Modest effects were observed for ERK-1/2 in these studies. Interestingly, some of the MAPK-dependent changes in gene expression observed in these studies are based on posttranscriptional regulation of mRNA stability.


Asunto(s)
Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Fosfoserina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad del ARN/efectos de los fármacos , Factor de Transcripción STAT1/metabolismo
19.
Biochem Biophys Res Commun ; 352(4): 913-8, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17157812

RESUMEN

Voltage-dependent K(+) (Kv) channels are involved in the immune response. Kv1.3 is highly expressed in activated macrophages and T-effector memory cells of autoimmune disease patients. Macrophages are actively involved in T-cell activation by cytokine production and antigen presentation. However, unlike T-cells, macrophages express Kv1.5, which is resistant to Kv1.3-drugs. We demonstrate that mononuclear phagocytes express different Kv1.3/Kv1.5 ratios, leading to biophysically and pharmacologically distinct channels. Therefore, Kv1.3-based treatments to alter physiological responses, such as proliferation and activation, are impaired by Kv1.5 expression. The presence of Kv1.5 in the macrophagic lineage should be taken into account when designing Kv1.3-based therapies.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.5/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Fenómenos Biofísicos , Biofisica , Células Cultivadas , Ratones , Venenos de Escorpión/farmacología
20.
J Biol Chem ; 282(17): 12566-73, 2007 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-17337450

RESUMEN

Macrophages proliferate in the presence of their growth factor, macrophage colony-stimulating factor (M-CSF), in a process that is dependent on early and short ERK activation. Lipopolysaccharide (LPS) induces macrophage activation, stops proliferation, and delays ERK phosphorylation, thereby triggering an inflammatory response. Proliferating or activating responses are balanced by the kinetics of ERK phosphorylation, the inactivation of which correlates with Mkp1 induction. Here we show that the transcriptional induction of this phosphatase by M-CSF or LPS depends on JNK but not on the other MAPKs, ERK and p38. The lack of Mkp1 induction caused by JNK inhibition prolonged ERK-1/2 and p38 phosphorylation. The two JNK genes, jnk1 and jnk2, are constitutively expressed in macrophages. However, only the JNK1 isoform was phosphorylated and, as determined in single knock-out mice, was necessary for Mkp1 induction by M-CSF or LPS. JNK1 was also required for pro-inflammatory cytokine biosynthesis (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6) and LPS-induced NO production. This requirement is independent of Mkp1 expression, as shown in Mkp1 knock-out mice. Our results demonstrate a critical role for JNK1 in the regulation of Mkp1 induction and in LPS-dependent macrophage activation.


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Proteínas Inmediatas-Precoces/biosíntesis , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/fisiología , Activación de Macrófagos/fisiología , Macrófagos/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/biosíntesis , Proteínas Tirosina Fosfatasas/biosíntesis , Animales , Células Cultivadas , Citocinas/biosíntesis , Fosfatasa 1 de Especificidad Dual , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/citología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Óxido Nítrico/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Proteína Fosfatasa 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA