Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Rep ; 39(3): 110679, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443165

RESUMEN

Adult stem cells coordinate intrinsic and extrinsic, local and systemic, cues to maintain the proper balance between self-renewal and differentiation. However, the precise mechanisms stem cells use to integrate these signals remain elusive. Here, we show that Escargot (Esg), a member of the Snail family of transcription factors, regulates the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis by attenuating the activity of the pro-differentiation insulin receptor (InR) pathway. Esg positively regulates the expression of an antagonist of insulin signaling, ImpL2, while also attenuating the expression of InR. Furthermore, Esg-mediated repression of the InR pathway is required to suppress CySC loss in response to starvation. Given the conservation of Snail-family transcription factors, characterizing the mechanisms by which Esg regulates cell-fate decisions during homeostasis and a decline in nutrient availability is likely to provide insight into the metabolic regulation of stem cell behavior in other tissues and organisms.


Asunto(s)
Células Madre Adultas , Proteínas de Drosophila , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Receptor de Insulina/metabolismo , Testículo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Free Radic Biol Med ; 166: 67-72, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33592309

RESUMEN

Germline stem cells (GSCs) are crucial for the generation of gametes and propagation of the species. Both intrinsic signaling pathways and environmental cues are employed in order to tightly control GSC behavior, including mitotic divisions, the choice between self-renewal or onset of differentiation, and survival. Recently, oxidation-reduction (redox) signaling has emerged as an important regulator of GSC and gamete behavior across species. In this review, we will highlight the primary mechanisms through which redox signaling acts to influence GSC behavior in different model organisms (Caenorhabditis elegans, Drosophila melanogaster and Mus musculus). In addition, we will summarize the latest research on the use of antioxidants to support mammalian spermatogenesis and discuss potential strategies for regenerative medicine in humans to enhance reproductive fitness.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Oxidación-Reducción , Medicina Regenerativa , Células Madre/metabolismo
3.
Autophagy ; 16(6): 1145-1147, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32150491

RESUMEN

In contrast to stress-induced macroautophagy/autophagy that happens during nutrient deprivation and other environmental challenges, basal autophagy is thought to be an important mechanism that cells utilize for homeostatic purposes. For instance, basal autophagy is used to recycle damaged and malfunctioning organelles and proteins to provide the building blocks for the generation of new ones throughout life. In addition, specialized autophagic processes, such as lipophagy, the autophagy-induced breakdown of lipid droplets (LDs), and glycophagy (breakdown of glycogen), are employed to maintain proper energy levels in the cell. The importance of autophagy in the regulation of stem cell behavior has been the focus of recent studies. However, the upstream signals that control autophagic activity in stem cells and the precise role of autophagy in stem cells are only starting to be elucidated. In a recent publication, we described how the Egfr (epidermal growth factor receptor) pathway stimulates basal autophagy to support the maintenance of somatic cyst stem cells (CySCs) and to control lipid levels in the Drosophila testis.


Asunto(s)
Células Madre Adultas , Proteínas de Drosophila , Células Madre Adultas/metabolismo , Animales , Autofagia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Homeostasis , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Lípidos , Masculino , Receptores de Péptidos de Invertebrados/metabolismo , Testículo/metabolismo
4.
Front Cell Dev Biol ; 8: 115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185173

RESUMEN

Adult stem cells constitute an important reservoir of self-renewing progenitor cells and are crucial for maintaining tissue and organ homeostasis. The capacity of stem cells to self-renew or differentiate can be attributed to distinct metabolic states, and it is now becoming apparent that metabolism plays instructive roles in stem cell fate decisions. Lipids are an extremely vast class of biomolecules, with essential roles in energy homeostasis, membrane structure and signaling. Imbalances in lipid homeostasis can result in lipotoxicity, cell death and diseases, such as cardiovascular disease, insulin resistance and diabetes, autoimmune disorders and cancer. Therefore, understanding how lipid metabolism affects stem cell behavior offers promising perspectives for the development of novel approaches to control stem cell behavior either in vitro or in patients, by modulating lipid metabolic pathways pharmacologically or through diet. In this review, we will first address how recent progress in lipidomics has created new opportunities to uncover stem-cell specific lipidomes. In addition, genetic and/or pharmacological modulation of lipid metabolism have shown the involvement of specific pathways, such as fatty acid oxidation (FAO), in regulating adult stem cell behavior. We will describe and compare findings obtained in multiple stem cell models in order to provide an assessment on whether unique lipid metabolic pathways may commonly regulate stem cell behavior. We will then review characterized and potential molecular mechanisms through which lipids can affect stem cell-specific properties, including self-renewal, differentiation potential or interaction with the niche. Finally, we aim to summarize the current knowledge of how alterations in lipid homeostasis that occur as a consequence of changes in diet, aging or disease can impact stem cells and, consequently, tissue homeostasis and repair.

5.
Mech Ageing Dev ; 189: 111278, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32522455

RESUMEN

Adult stem cells sustain tissue homeostasis throughout life and provide an important reservoir of cells capable of tissue repair in response to stress and tissue damage. Age-related changes to stem cells and/or the specialized niches that house them have been shown to negatively impact stem cell maintenance and activity. In addition, metabolic inputs have surfaced as another crucial layer in the control of stem cell behavior (Chandel et al., 2016; Folmes and Terzic, 2016; Ito and Suda, 2014; Mana et al., 2017; Shyh-Chang and Ng, 2017). Here, we will present a brief review of how lipid metabolism influences adult stem cell behavior under homeostatic conditions and speculate on how changes in lipid metabolism may impact stem cell ageing. This review considers the future of lipid metabolism research in stem cells, with the long-term goal of identifying mechanisms that could be targeted to counter or slow the age-related decline in stem cell function.


Asunto(s)
Células Madre Adultas/metabolismo , Envejecimiento/metabolismo , Senescencia Celular , Metabolismo de los Lípidos , Células Madre Adultas/patología , Envejecimiento/patología , Animales , Humanos
6.
Cell Rep ; 30(4): 1101-1116.e5, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31995752

RESUMEN

Although typically upregulated upon cellular stress, autophagy can also be utilized under homeostatic conditions as a quality control mechanism or in response to developmental cues. Here, we report that autophagy is required for the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis. Disruption of autophagy in CySCs and early cyst cells (CCs) by the depletion of autophagy-related (Atg) genes reduced early CC numbers and affected CC function, resembling decreased epidermal growth factor receptor (EGFR) signaling. Indeed, our data indicate that EGFR acts to stimulate autophagy to preserve early CC function, whereas target of rapamycin (TOR) negatively regulates autophagy in the differentiating CCs. Finally, we show that the EGFR-mediated stimulation of autophagy regulates lipid levels in CySCs and CCs. These results demonstrate a key role for autophagy in regulating somatic stem cell behavior and tissue homeostasis by integrating cues from both the EGFR and TOR signaling pathways to control lipid metabolism.


Asunto(s)
Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Receptores ErbB/metabolismo , Células Germinativas/metabolismo , Metabolismo de los Lípidos/genética , Receptores de Péptidos de Invertebrados/metabolismo , Células Madre/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Receptores ErbB/genética , Técnicas de Silenciamiento del Gen , Células Germinativas/crecimiento & desarrollo , Homeostasis , Sistema de Señalización de MAP Quinasas/genética , Masculino , Interferencia de ARN , Receptores de Péptidos de Invertebrados/genética , Serina-Treonina Quinasas TOR/metabolismo , Testículo/citología , Testículo/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
7.
Sci Rep ; 9(1): 19695, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873089

RESUMEN

Mitochondria are essential organelles that have recently emerged as hubs for several metabolic and signaling pathways in the cell. Mitochondrial morphology is regulated by constant fusion and fission events to maintain a functional mitochondrial network and to remodel the mitochondrial network in response to external stimuli. Although the role of mitochondria in later stages of spermatogenesis has been investigated in depth, the role of mitochondrial dynamics in regulating early germ cell behavior is relatively less-well understood. We previously demonstrated that mitochondrial fusion is required for germline stem cell (GSC) maintenance in the Drosophila testis. Here, we show that mitochondrial fission is also important for regulating the maintenance of early germ cells in larval testes. Inhibition of Drp1 in early germ cells resulted in the loss of GSCs and spermatogonia due to the accumulation of reactive oxygen species (ROS) and activation of the EGFR pathway in adjacent somatic cyst cells. EGFR activation contributed to premature germ cell differentiation. Our data provide insights into how mitochondrial dynamics can impact germ cell maintenance and differentiation via distinct mechanisms throughout development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Dinámicas Mitocondriales/fisiología , Receptores de Péptidos de Invertebrados/metabolismo , Espermatozoides/metabolismo , Testículo/citología , Testículo/metabolismo , Células Madre Germinales Adultas/citología , Células Madre Germinales Adultas/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Larva/citología , Larva/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Receptores de Péptidos de Invertebrados/genética , Transducción de Señal , Espermatogénesis/fisiología , Espermatogonias/citología , Espermatogonias/metabolismo , Espermatozoides/citología
8.
Nat Cell Biol ; 21(6): 710-720, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31160709

RESUMEN

The capacity of stem cells to self-renew or differentiate has been attributed to distinct metabolic states. A genetic screen targeting regulators of mitochondrial dynamics revealed that mitochondrial fusion is required for the maintenance of male germline stem cells (GSCs) in Drosophila melanogaster. Depletion of Mitofusin (dMfn) or Opa1 led to dysfunctional mitochondria, activation of Target of rapamycin (TOR) and a marked accumulation of lipid droplets. Enhancement of lipid utilization by the mitochondria attenuated TOR activation and rescued the loss of GSCs that was caused by inhibition of mitochondrial fusion. Moreover, constitutive activation of the TOR-pathway target and lipogenesis factor Sterol regulatory element binding protein (SREBP) also resulted in GSC loss, whereas inhibition of SREBP rescued GSC loss triggered by depletion of dMfn. Our findings highlight a critical role for mitochondrial fusion and lipid homeostasis in GSC maintenance, providing insight into the potential impact of mitochondrial and metabolic diseases on the function of stem and/or germ cells.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Dinámicas Mitocondriales/genética , Células Madre/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Diferenciación Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Homeostasis , Metabolismo de los Lípidos/genética , Masculino , Mitocondrias/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/genética , Nicho de Células Madre/genética , Células Madre/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA