Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 28(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37049710

RESUMEN

Efficient inactivation of microbial α-amylases (EC 3.2.1.1) can be a challenge in starch systems as the presence of starch has been shown to enhance the stability of the enzymes. In this study, commonly used inactivation methods, including multistep washing and pH adjustment, were assessed for their efficiency in inactivating different α-amylases in presence of raw potato starch. Furthermore, an effective approach for irreversible α-amylase inactivation using sodium hypochlorite (NaOCl) is demonstrated. Regarding inactivation by extreme pH, the activity of five different α-amylases was either eliminated or significantly reduced at pH 1.5 and 12. However, treatment at extreme pH for 5 min, followed by incubation at pH 6.5, resulted in hydrolysis yields of 42-816% relative to controls that had not been subjected to extreme pH. "Inactivation" by multistep washing with water, ethanol, and acetone followed by gelatinization as preparation for analysis gave significant starch hydrolysis compared to samples inactivated with NaOCl before the wash. This indicates that the further starch degradation observed in samples subjected to washing only took place during the subsequent gelatinization. The current study demonstrates the importance of inactivation methodology in α-amylase-mediated raw starch depolymerization and provides a method for efficient α-amylase inactivation in starch systems.


Asunto(s)
Solanum tuberosum , alfa-Amilasas , alfa-Amilasas/metabolismo , Solanum tuberosum/metabolismo , Hidrólisis , Etanol , Almidón/metabolismo
2.
Biomacromolecules ; 20(1): 443-453, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30525515

RESUMEN

Cellulose fibers can be freed from the cell-wall skeleton via high-shear homogenization, to produce cellulose nanofibers (CNF) that can be used, for example, as the reinforcing phase in composite materials. Nanofiber production from agro-industrial byproducts normally involves harsh chemical-pretreatments and high temperatures to remove noncellulosic polysaccharides (20-70% of dry weight). However, this is expensive for large-scale processing and environmentally damaging. An enzyme-only pretreatment to obtain CNF from agro-industrial byproducts (potato and sugar beet) was developed with targeted commercial enzyme mixtures. It is hypothesized that cellulose can be isolated from the biomass, using enzymes only, due to the low lignin content, facilitating greater liberation of CNF via high-shear homogenization. Comprehensive Microarray Polymer Profiling (CoMPP) measured remaining extractable polysaccharides, showing that the enzyme-pretreatment was more successful at removing noncellulosic polysaccharides than alkaline- or acid-hydrolysis alone. While effective alone, the effect of the enzyme-pretreatment was bolstered via combination with a mild high-pH pretreatment. Dynamic rheology was used to estimate the proportion of CNF in resultant suspensions. Enzyme-pretreated suspensions showed 4-fold and 10-fold increases in the storage modulus for potato and sugar beet, respectively, compared to untreated samples. A greener yet facile method for producing CNF from vegetable waste is presented here.


Asunto(s)
Biotecnología/métodos , Celulosa/análogos & derivados , Residuos Industriales , Nanofibras/química , Verduras/química , Beta vulgaris/química , Biocatálisis , Hidrólisis , Solanum tuberosum/química
3.
N Biotechnol ; 79: 39-49, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38097138

RESUMEN

4-α-glucanotransferases (4αGTs, EC 2.4.1.25) from glycoside hydrolase family 77 (GH77) catalyze chain elongation of starch amylopectin chains and can be utilized to structurally modify starch to tailor its gelation properties. The potential relationship between the structural design of 4αGTs and functional starch modification is unknown. Here, family GH77 was mined in silico for enzyme candidates based on sub-grouping guided by Conserved Unique Peptide Patterns (CUPP) bioinformatics categorization. From + 12,000 protein sequences a representative set of 27 4αGTs, representing four different domain architectures, different bacterial origins and diverse CUPP groups, was selected for heterologous expression and further study. Most of the enzymes catalyzed starch modification, but their efficacies varied substantially. Five of the 4αGTs were characterized in detail, and their action was compared to that of the industrial benchmark enzyme, Tt4αGT (CUPP 77_1.2), from Thermus thermophilus. Reaction optima of the five 4αGTs ranged from ∼40-60 °C and pH 7.3-9.0. Several were stable for a minimum 4 h at 70 °C. Domain architecture type A proteins, consisting only of a catalytic domain, had high thermal stability and high starch modification ability. All five novel 4αGTs (and Tt4αGT) induced enhanced gelling of potato starch. One, At4αGT from Azospirillum thermophilum (CUPP 77_2.4), displayed distinct starch modifying abilities, whereas T24αGT from Thermus sp. 2.9 (CUPP 77_1.2) modified the starch similarly to Tt4αGT, but slightly more effectively. T24αGT and At4αGT are thus interesting candidates for industrial starch modification. A model is proposed to explain the link between the 4αGT induced molecular modifications and macroscopic starch gelation.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno , Solanum tuberosum , Solanum tuberosum/metabolismo , Glicósido Hidrolasas , Almidón , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Péptidos
4.
Int J Biol Macromol ; 224: 105-114, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36257364

RESUMEN

4-α-glucanotransferase (EC 2.4.1.25) mediated glucan transfer in starch provides opportunities for production of clean label starch ingredients with unique gelling properties. 4-α-glucanotransferases can be found in glycoside hydrolase (GH) family GH13, GH57, and in the monospecific glycoside hydrolase family 77 (GH77). Here, pH-temperature optima, steady-state kinetics, potato starch modifying properties and structural folds are reported for six phylogenetically distinct GH77 members, representing four different domain architectures including a novel multi-domain 4-α-glucanotransferase from Lactococcus lactis. Four of the enzymes exhibited starch modifying activity leading to a gradual decrease of the amylose content, elongation of amylopectin chains, and enabled formation of firm starch gels. Unexpectedly, these diverse enzymes catalyzed similar changes in chain length distributions. However, the amylose depletion and amylopectin elongation rates spanned more than two orders of magnitude between the enzyme showing very different specific activities. Tt4αGT from Thermus thermophilus had highest temperature optimum (73 °C) and superior potato starch modifying efficacy compared to the other five enzymes.


Asunto(s)
Amilopectina , Solanum tuberosum , Amilopectina/química , Glicósido Hidrolasas , Amilosa/química , Almidón
5.
J Agric Food Chem ; 68(5): 1390-1396, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31935098

RESUMEN

Potato juice is a byproduct of starch processing currently used as feed. However, potato proteins are an untapped source of high-protein food for human nutrition if harmful constituents notably glycoalkaloids (GAs) are detoxified. The two principle GAs found in potato are α-chaconine and α-solanine, both consisting of a solanidine aglycone with a carbohydrate side chain. The first step in the detoxification of these compounds is the removal of the trisaccharide. Whole-genome sequencing of a bacterial isolate, Arthrobacter sp. S41, capable of completely degrading α-chaconine and α-solanine, revealed the presence of a gene cluster possibly involved in the deglycosylation of GAs. Functional characterization confirmed the enzymatic activity of the gene cluster involved in the complete deglycosylation of both α-chaconine and α-solanine. The novel enzymes described here may find value in the bioconversion of feed proteins to food proteins suitable for human nutrition.


Asunto(s)
Arthrobacter/metabolismo , Proteínas Bacterianas/metabolismo , Familia de Multigenes , Solanina/análogos & derivados , Solanum tuberosum/toxicidad , Arthrobacter/clasificación , Arthrobacter/enzimología , Arthrobacter/genética , Proteínas Bacterianas/genética , Biotransformación , Glicosilación , Filogenia , Solanina/química , Solanina/metabolismo , Solanina/toxicidad , Solanum tuberosum/metabolismo
6.
Food Res Int ; 125: 108644, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31554129

RESUMEN

Potato fiber is a side product in starch manufacturing rich in dietary fibers such as pectin, cellulose, hemicellulose and resistant starch. So far, the beneficial properties of potato fiber have been poorly characterized. This study investigated the effect of FiberBind 400, a commercial potato fiber product, on survival of probiotic Lactobacillus strains at simulated gastric conditions and on the composition and metabolic activity of the gut microbiota, using the TIM-2 colon model. Resistant starch and native starch from potato were used as reference substrates. FiberBind 400 had an ability to improve survival of the four tested strains, Lactobacillus fermentum PCC®, L. rhamnosus LGG®, L. reuteri RC-14® and L. paracasei F-19® in a strain-dependent way. The highest effect was observed for L. fermentum PCC® and L. rhamnosus LGG®. The effect of starches on bacterial survival was insignificant. Composition of the fecal microbiota in TIM-2 fermentations was assessed by high-throughput sequencing of 16S rRNA gene amplicon. Fermentation of FiberBind 400 resulted in more diverse microbial communities compared to starches. Changes in microbial abundances specifically mediated by FiberBind 400, included increases in the genera Lachnospira, Butyrivibrio, Mogibacterium, Parabacteroides, Prevotella and Desulfovibrio, and the species B. ovatus, as well as decreases in Ruminococcus torques and unassigned Ruminococcus spp. Shifts in other bacterial populations, such as increased abundances of Oscillospira, Enterococcus, Bacteroidales, Citrobacter, along with reduction of Roseburia, Ruminococcus, and Faecalibacterium prausnitzii were not significantly different between the substrates. Cumulative production of individual short-chain fatty acids was similar between potato fiber and starches. The study demonstrated that FiberBind 400 had a potential to protect probiotic Lactobacillus strains during the passage through the gastrointestinal tract and selectively modulate the gut bacterial populations. This knowledge can support application of potato fiber as a functional food ingredient with added biological benefits.


Asunto(s)
Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal/fisiología , Lactobacillus/fisiología , Probióticos , Solanum tuberosum/química , Digestión , Ácidos Grasos/biosíntesis , Ácidos Grasos Volátiles , Heces/microbiología , Fermentación , Alimentos Funcionales , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Lactobacillus/efectos de los fármacos , Lactobacillus/crecimiento & desarrollo , Especificidad de la Especie , Almidón/administración & dosificación
7.
Front Microbiol ; 9: 2648, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455676

RESUMEN

Potato juice, a by-product of starch processing, is a potential high-value food ingredient due to its high protein content. However, conversion from feed to human protein requires the removal of the toxic antinutritional glycoalkaloids (GAs) α-chaconine and α-solanine. Detoxification by enzymatic removal could potentially provide an effective and environmentally friendly process for potato-derived food protein production. While degradation of GAs by microorganisms has been documented, there exists limited knowledge on the enzymes involved and in particular how bacteria degrade and metabolize GAs. Here we describe a series of methods for the isolation, screening, and selection of GA-degrading bacteria. Bacterial cultures from soils surrounding greened potatoes, including the potato peels, were established and select bacterial isolates were studied. Screening of bacterial crude extracts for the ability to hydrolyze GAs was performed using a combination of thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and liquid chromatography mass spectrometry (LC-MS). Analysis of the 16S rRNA sequences revealed that bacteria within the genus Arthrobacter were among the most efficient GA-degrading strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA