Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 629(8013): 878-885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720086

RESUMEN

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Simulación por Computador , Diseño de Fármacos , SARS-CoV-2 , Animales , Femenino , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Mutación , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Análisis Mutacional de ADN , Deriva y Cambio Antigénico/genética , Deriva y Cambio Antigénico/inmunología , Diseño de Fármacos/métodos
2.
Proc Natl Acad Sci U S A ; 113(3): 632-7, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26721397

RESUMEN

Cilia (eukaryotic flagella) are present in diverse eukaryotic lineages and have essential motility and sensory functions. The cilium's capacity to sense and transduce extracellular signals depends on dynamic trafficking of ciliary membrane proteins. This trafficking is often mediated by the Bardet-Biedl Syndrome complex (BBSome), a protein complex for which the precise subcellular distribution and mechanisms of action are unclear. In humans, BBSome defects perturb ciliary membrane protein distribution and manifest clinically as Bardet-Biedl Syndrome. Cilia are also important in several parasites that cause tremendous human suffering worldwide, yet biology of the parasite BBSome remains largely unexplored. We examined BBSome functions in Trypanosoma brucei, a flagellated protozoan parasite that causes African sleeping sickness in humans. We report that T. brucei BBS proteins assemble into a BBSome that interacts with clathrin and is localized to membranes of the flagellar pocket and adjacent cytoplasmic vesicles. Using BBS gene knockouts and a mouse infection model, we show the T. brucei BBSome is dispensable for flagellar assembly, motility, bulk endocytosis, and cell viability but required for parasite virulence. Quantitative proteomics reveal alterations in the parasite surface proteome of BBSome mutants, suggesting that virulence defects are caused by failure to maintain fidelity of the host-parasite interface. Interestingly, among proteins altered are those with ubiquitination-dependent localization, and we find that the BBSome interacts with ubiquitin. Collectively, our data indicate that the BBSome facilitates endocytic sorting of select membrane proteins at the base of the cilium, illuminating BBSome roles at a critical host-pathogen interface and offering insights into BBSome molecular mechanisms.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Endocitosis , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidad , Animales , Clatrina/metabolismo , Flagelos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Parásitos/patogenicidad , Unión Proteica , Transporte de Proteínas , Vesículas Transportadoras/metabolismo , Virulencia
3.
Anal Chem ; 90(11): 6913-6921, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29756770

RESUMEN

The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.


Asunto(s)
Proteína 9 Asociada a CRISPR/análisis , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Fluorescencia , Proteína 9 Asociada a CRISPR/metabolismo , Campylobacter jejuni/enzimología , Humanos , Staphylococcus aureus/enzimología , Streptococcus pyogenes/enzimología
4.
Mol Cell Proteomics ; 14(7): 1977-88, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25963835

RESUMEN

African trypanosomes are devastating human and animal pathogens transmitted by tsetse flies between mammalian hosts. The trypanosome surface forms a critical host interface that is essential for sensing and adapting to diverse host environments. However, trypanosome surface protein composition and diversity remain largely unknown. Here, we use surface labeling, affinity purification, and proteomic analyses to describe cell surface proteomes from insect-stage and mammalian bloodstream-stage Trypanosoma brucei. The cell surface proteomes contain most previously characterized surface proteins. We additionally identify a substantial number of novel proteins, whose functions are unknown, indicating the parasite surface proteome is larger and more diverse than generally appreciated. We also show stage-specific expression for individual paralogs within several protein families, suggesting that fine-tuned remodeling of the parasite surface allows adaptation to diverse host environments, while still fulfilling universally essential cellular needs. Our surface proteome analyses complement existing transcriptomic, proteomic, and in silico analyses by highlighting proteins that are surface-exposed and thereby provide a major step forward in defining the host-parasite interface.


Asunto(s)
Membrana Celular/metabolismo , Interacciones Huésped-Parásitos , Parásitos/crecimiento & desarrollo , Parásitos/metabolismo , Proteómica/métodos , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Adaptación Fisiológica , Animales , Bases de Datos de Proteínas , Humanos , Estadios del Ciclo de Vida , Familia de Multigenes , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
5.
RNA ; 20(8): 1272-86, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24962368

RESUMEN

Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas de Unión a Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Factor 4E Eucariótico de Iniciación/química , Técnicas de Inactivación de Genes , Humanos , Datos de Secuencia Molecular , Unión Proteica , Caperuzas de ARN/metabolismo , ARN Protozoario/metabolismo , Alineación de Secuencia , Trypanosoma brucei brucei/genética
6.
Eukaryot Cell ; 14(1): 104-12, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25416239

RESUMEN

Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed "social motility," based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/fisiología , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Animales , Dominio Catalítico , Línea Celular Tumoral , Humanos , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/patogenicidad , Moscas Tse-Tse/parasitología
7.
Eukaryot Cell ; 13(8): 1064-76, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24879126

RESUMEN

Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.


Asunto(s)
Adenilil Ciclasas/metabolismo , Flagelos/enzimología , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Adenilil Ciclasas/genética , Animales , Línea Celular , Insectos/parasitología , Estadios del Ciclo de Vida , Transporte de Proteínas , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo
8.
Eukaryot Cell ; 13(7): 896-908, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24839125

RESUMEN

Trypanosomes lack the transcriptional control characteristic of the majority of eukaryotes that is mediated by gene-specific promoters in a one-gene-one-promoter arrangement. Rather, their genomes are transcribed in large polycistrons with no obvious functional linkage. Posttranscriptional regulation of gene expression must thus play a larger role in these organisms. The eIF4E homolog TbEIF4E6 binds mRNA cap analogs in vitro and is part of a complex in vivo that may fulfill such a role. Knockdown of TbEIF4E6 tagged with protein A-tobacco etch virus protease cleavage site-protein C to approximately 15% of the normal expression level resulted in viable cells that displayed a set of phenotypes linked to detachment of the flagellum from the length of the cell body, if not outright flagellum loss. While these cells appeared and behaved as normal under stationary liquid culture conditions, standard centrifugation resulted in a marked increase in flagellar detachment. Furthermore, the ability of TbEIF4E6-depleted cells to engage in social motility was reduced. The TbEIF4E6 protein forms a cytosolic complex containing a triad of proteins, including the eIF4G homolog TbEIF4G5 and a hypothetical protein of 70.3 kDa, referred to as TbG5-IP. The TbG5-IP analysis revealed two domains with predicted secondary structures conserved in mRNA capping enzymes: nucleoside triphosphate hydrolase and guanylyltransferase. These complex members have the potential for RNA interaction, either via the 5' cap structure for TbEIF4E6 and TbG5-IP or through RNA-binding domains in TbEIF4G5. The associated proteins provide a signpost for future studies to determine how this complex affects capped RNA molecules.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Sitios de Unión , Movimiento Celular , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/genética , Flagelos/metabolismo , Nucleotidiltransferasas/química , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/fisiología
9.
PLoS One ; 19(1): e0289198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271318

RESUMEN

Viral populations in natural infections can have a high degree of sequence diversity, which can directly impact immune escape. However, antibody potency is often tested in vitro with a relatively clonal viral populations, such as laboratory virus or pseudotyped virus stocks, which may not accurately represent the genetic diversity of circulating viral genotypes. This can affect the validity of viral phenotype assays, such as antibody neutralization assays. To address this issue, we tested whether recombinant virus carrying SARS-CoV-2 spike (VSV-SARS-CoV-2-S) stocks could be made more genetically diverse by passage, and if a stock passaged under selective pressure was more capable of escaping monoclonal antibody (mAb) neutralization than unpassaged stock or than viral stock passaged without selective pressures. We passaged VSV-SARS-CoV-2-S four times concurrently in three cell lines and then six times with or without polyclonal antiserum selection pressure. All three of the monoclonal antibodies tested neutralized the viral population present in the unpassaged stock. The viral inoculum derived from serial passage without antiserum selection pressure was neutralized by two of the three mAbs. However, the viral inoculum derived from serial passage under antiserum selection pressure escaped neutralization by all three mAbs. Deep sequencing revealed the rapid acquisition of multiple mutations associated with antibody escape in the VSV-SARS-CoV-2-S that had been passaged in the presence of antiserum, including key mutations present in currently circulating Omicron subvariants. These data indicate that viral stock that was generated under polyclonal antiserum selection pressure better reflects the natural environment of the circulating virus and may yield more biologically relevant outcomes in phenotypic assays. Thus, mAb assessment assays that utilize a more genetically diverse, biologically relevant, virus stock may yield data that are relevant for prediction of mAb efficacy and for enhancing biosurveillance.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos Antivirales , Pruebas de Neutralización , Sueros Inmunes , Glicoproteína de la Espiga del Coronavirus/genética
10.
Mol Cell Proteomics ; 10(10): M111.010538, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21685506

RESUMEN

The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.


Asunto(s)
Flagelos/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Proteoma/análisis , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Movimiento Celular , Proteínas de la Matriz Extracelular/análisis , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Proteoma/genética , Proteoma/metabolismo , Proteínas Protozoarias/análisis , Interferencia de ARN , Transducción de Señal
11.
Sci Rep ; 13(1): 6873, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105997

RESUMEN

Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann-Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.


Asunto(s)
Sistemas CRISPR-Cas , Nanopartículas , Ratones , Animales , Edición Génica , Antivirales , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Lípidos
12.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36324800

RESUMEN

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

14.
Mol Ther Methods Clin Dev ; 23: 286-295, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34729376

RESUMEN

Targeting host factors for anti-viral development offers several potential advantages over traditional countermeasures that include broad-spectrum activity and prevention of resistance. Characterization of host factors in animal models provides strong evidence of their involvement in disease pathogenesis, but the feasibility of performing high-throughput in vivo analyses on lists of genes is problematic. To begin addressing the challenges of screening candidate host factors in vivo, we combined advances in CRISPR-Cas9 genome editing with an immunocompromised mouse model used to study highly pathogenic viruses. Transgenic mice harboring a constitutively expressed Cas9 allele (Cas9 tg/tg ) with or without knockout of type I interferon receptors served to optimize in vivo delivery of CRISPR single-guide RNA (sgRNA) using Invivofectamine 3.0, a simple and easy-to-use lipid nanoparticle reagent. Invivofectamine 3.0-mediated liver-specific editing to remove activity of the critical Ebola virus host factor Niemann-Pick disease type C1 in an average of 74% of liver cells protected immunocompromised Cas9 tg/tg mice from lethal surrogate Ebola virus infection. We envision that immunocompromised Cas9 tg/tg mice combined with straightforward sgRNA in vivo delivery will enable efficient host factor loss-of-function screening in the liver and other organs to rapidly study their effects on viral pathogenesis and help initiate development of broad-spectrum, host-directed therapies against emerging pathogens.

15.
MAbs ; 13(1): 1958663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34348076

RESUMEN

The respiratory virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected nearly every aspect of life worldwide, claiming the lives of over 3.9 million people globally, at the time of this publication. Neutralizing humanized nanobody (VHH)-based antibodies (VHH-huFc) represent a promising therapeutic intervention strategy to address the current SARS-CoV-2 pandemic and provide a powerful toolkit to address future virus outbreaks. Using a synthetic, high-diversity VHH bacteriophage library, several potent neutralizing VHH-huFc antibodies were identified and evaluated for their capacity to tightly bind to the SARS-CoV-2 receptor-binding domain, to prevent binding of SARS-CoV-2 spike (S) to the cellular receptor angiotensin-converting enzyme 2, and to neutralize viral infection. Preliminary preclinical evaluation of multiple VHH-huFc antibody candidates demonstrate that they are prophylactically and therapeutically effective in vivo against wildtype SARS-CoV-2. The identified and characterized VHH-huFc antibodies described herein represent viable candidates for further preclinical evaluation and another tool to add to our therapeutic arsenal to address the COVID-19 pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Humanos
16.
Front Mol Biosci ; 8: 678701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327214

RESUMEN

A rapid response is necessary to contain emergent biological outbreaks before they can become pandemics. The novel coronavirus (SARS-CoV-2) that causes COVID-19 was first reported in December of 2019 in Wuhan, China and reached most corners of the globe in less than two months. In just over a year since the initial infections, COVID-19 infected almost 100 million people worldwide. Although similar to SARS-CoV and MERS-CoV, SARS-CoV-2 has resisted treatments that are effective against other coronaviruses. Crystal structures of two SARS-CoV-2 proteins, spike protein and main protease, have been reported and can serve as targets for studies in neutralizing this threat. We have employed molecular docking, molecular dynamics simulations, and machine learning to identify from a library of 26 million molecules possible candidate compounds that may attenuate or neutralize the effects of this virus. The viability of selected candidate compounds against SARS-CoV-2 was determined experimentally by biolayer interferometry and FRET-based activity protein assays along with virus-based assays. In the pseudovirus assay, imatinib and lapatinib had IC50 values below 10 µM, while candesartan cilexetil had an IC50 value of approximately 67 µM against Mpro in a FRET-based activity assay. Comparatively, candesartan cilexetil had the highest selectivity index of all compounds tested as its half-maximal cytotoxicity concentration 50 (CC50) value was the only one greater than the limit of the assay (>100 µM).

17.
mSphere ; 5(4)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32817459

RESUMEN

To complete its infectious cycle, the protozoan parasite Trypanosoma brucei must navigate through diverse tissue environments in both its tsetse fly and mammalian hosts. This is hypothesized to be driven by yet unidentified chemotactic cues. Prior work has shown that parasites engaging in social motility in vitro alter their trajectory to avoid other groups of parasites, an example of negative chemotaxis. However, movement of T. brucei toward a stimulus, positive chemotaxis, has so far not been reported. Here, we show that upon encountering Escherichia coli, socially behaving T. brucei parasites exhibit positive chemotaxis, redirecting group movement toward the neighboring bacterial colony. This response occurs at a distance from the bacteria and involves active changes in parasite motility. By developing a quantitative chemotaxis assay, we show that the attractant is a soluble, diffusible signal dependent on actively growing E. coli Time-lapse and live video microscopy revealed that T. brucei chemotaxis involves changes in both group and single cell motility. Groups of parasites change direction of group movement and accelerate as they approach the source of attractant, and this correlates with increasingly constrained movement of individual cells within the group. Identification of positive chemotaxis in T. brucei opens new opportunities to study mechanisms of chemotaxis in these medically and economically important pathogens. This will lead to deeper insights into how these parasites interact with and navigate through their host environments.IMPORTANCE Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies.


Asunto(s)
Quimiotaxis , Escherichia coli/fisiología , Interacciones Microbianas , Trypanosoma brucei brucei/fisiología , Escherichia coli/crecimiento & desarrollo , Imagen de Lapso de Tiempo
18.
Acta Biomater ; 114: 358-368, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702530

RESUMEN

CRISPR gene editing technology is strategically foreseen to control diseases by correcting underlying aberrant genetic sequences. In order to overcome drawbacks associated with viral vectors, the establishment of an effective non-viral CRISPR delivery vehicle has become an important goal for nanomaterial scientists. Herein, we introduce a monosized lipid-coated mesoporous silica nanoparticle (LC-MSN) delivery vehicle that enables both loading of CRISPR components [145 µg ribonucleoprotein (RNP) or 40 µg plasmid/mg nanoparticles] and efficient release within cancer cells (70%). The RNP-loaded LC-MSN exhibited 10% gene editing in both in vitro reporter cancer cell lines and in an in vivo Ai9-tdTomato reporter mouse model. The structural and chemical versatility of the mesoporous silica core and lipid coating along with framework dissolution-assisted cargo delivery open new prospects towards safe CRISPR component delivery and enhanced gene editing. STATEMENT OF SIGNIFICANCE: After the discovery of CRISPR gene-correcting technology in bacteria. The translation of this technology to mammalian cells may change the face of cancer therapy within the next years. This was first made possible through the use of viral vectors; however, such systems limit the safe translation of CRISPR into clinics because its difficult preparation and immunogenicity. Therefore, biocompatible non-viral nanoparticulate systems are required to successfully deliver CRISPR into cancer cells. The present study presents the use of biomimetic lipid-coated mesoporous silica nanoparticles showing successful delivery of CRISPR ribonucleoprotein and plasmid into HeLa cervical and A549 lung cancer cells as well as successful gene editing in mice brain.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Membrana Dobles de Lípidos , Ratones
19.
Biosens Bioelectron ; 141: 111361, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31207570

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complex is an RNA-guided DNA-nuclease that is part of the bacterial adaptive immune system. CRISPR/Cas9 RNP has been adapted for targeted genome editing within cells and whole organisms with new applications vastly outpacing detection and quantification of gene-editing reagents. Detection of the CRISPR/Cas9 RNP within biological samples is critical for assessing gene-editing reagent delivery efficiency, retention, persistence, and distribution within living organisms. Conventional detection methods are effective, yet the expense and lack of scalability for antibody-based affinity reagents limit these techniques for clinical and/or field settings. This necessitates the development of low cost, scalable CRISPR/Cas9 RNP affinity reagents as alternatives or augments to antibodies. Herein, we report the development of the Streptococcus pyogenes anti-CRISPR/Cas9 protein, AcrIIA4, as a novel affinity reagent. An engineered cysteine linker enables covalent immobilization of AcrIIA4 onto glassy carbon electrodes functionalized via aryl diazonium chemistry for detection of CRISPR/Cas9 RNP by electrochemical, fluorescent, and colorimetric methods. Electrochemical measurements achieve a detection of 280 pM RNP in reaction buffer and 8 nM RNP in biologically representative conditions. Our results demonstrate the ability of anti-CRISPR proteins to serve as robust, specific, flexible, and economical recognition elements in biosensing/quantification devices for CRISPR/Cas9 RNP.


Asunto(s)
Proteínas Bacterianas/análisis , Bacteriófagos/química , Técnicas Biosensibles/métodos , Proteína 9 Asociada a CRISPR/análisis , Streptococcus pyogenes/química , Proteínas Virales/química , Sistemas CRISPR-Cas , Proteínas Inmovilizadas/química , Ligandos , Modelos Moleculares
20.
Sci Rep ; 7(1): 15586, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138425

RESUMEN

The high-affinity receptor for IgE expressed on the surface of mast cells and basophils interacts with antigens, via bound IgE antibody, and triggers secretion of inflammatory mediators that contribute to allergic reactions. To understand how past inputs (memory) influence future inflammatory responses in mast cells, a microfluidic device was used to precisely control exposure of cells to alternating stimulatory and non-stimulatory inputs. We determined that the response to subsequent stimulation depends on the interval of signaling quiescence. For shorter intervals of signaling quiescence, the second response is blunted relative to the first response, whereas longer intervals of quiescence induce an enhanced second response. Through an iterative process of computational modeling and experimental tests, we found that these memory-like phenomena arise from a confluence of rapid, short-lived positive signals driven by the protein tyrosine kinase Syk; slow, long-lived negative signals driven by the lipid phosphatase Ship1; and slower degradation of Ship1 co-factors. This work advances our understanding of mast cell signaling and represents a generalizable approach for investigating the dynamics of signaling systems.


Asunto(s)
Inflamación/inmunología , Mastocitos/inmunología , Receptores de IgE/inmunología , Transducción de Señal/inmunología , Animales , Anticuerpos/inmunología , Antígenos/inmunología , Basófilos/inmunología , Humanos , Inflamación/genética , Inflamación/metabolismo , Dispositivos Laboratorio en un Chip , Mastocitos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/inmunología , Receptores de IgE/genética , Transducción de Señal/genética , Quinasa Syk/genética , Quinasa Syk/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA