RESUMEN
Crystallization of polymers from entangled melts generally leads to the formation of semicrystalline materials with a nanoscopic morphology consisting of stacks of alternating crystalline and amorphous layers. The factors controlling the thickness of the crystalline layers are well studied; however, there is no quantitative understanding of the thickness of the amorphous layers. We elucidate the effect of entanglements on the semicrystalline morphology by the use of a series of model blends of high-molecular-weight polymers with unentangled oligomers leading to a reduced entanglement density in the melt as characterized by rheological measurements. Small-angle X-ray scattering experiments after isothermal crystallization reveal a reduced thickness of the amorphous layers, while the crystal thickness remains largely unaffected. We introduce a simple, yet quantitative model without adjustable parameters, according to which the measured thickness of the amorphous layers adjusts itself in such a way that the entanglement concentration reaches a specific maximum value. Furthermore, our model suggests an explanation for the large supercooling that is typically required for crystallization of polymers if entanglements cannot be dissolved during crystallization.
RESUMEN
Hydrogels are polymer networks swollen in water; they are suitable materials for biomedical applications such as tissue engineering and drug delivery. In the latter, the controlled diffusion of small diffusants inside the network is essential, as it determines the release mechanism of the drug. In general, the diffusion inside a polymer network is controlled by its mesh-size. Here, we actively control the diffusivity and also the softness of metallo-supramolecular hydrogels via the network mesh-topology by introducing connectivity defects. A model polymer network is realized based on a 4-arm poly(ethylene glycol) (pEG) where each arm is capped with terpyridine moieties that are capable of forming metallo-supramolecular complexes with zinc ions. In this model network, we insert 8-arm pEG macromolecules that are functionalized with terpyridine at different ratios to create connectivity defects. With an increasing amount of 8-arm pEG, the polymer network forms more loops, as quantified by double quantum-NMR. This doped network shows an enhanced self-diffusivity of the building block molecules within the network, as examined by fluorescence recovery after photobleaching, and a higher softness, as investigated by oscillatory shear rheology. With these findings, we show that it is possible to tune the diffusivity and softness of hydrogels with defects in a rational fashion.
RESUMEN
A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and a taurine-modified MgAL layered double hydroxide (T-LDH) as the nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed using conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility dependent on the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, two separate vitrification mechanisms were also found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content.
RESUMEN
Dynamically inhomogeneous polymer systems exhibit interphases with mobility gradients. These are believed to play key roles in the material's performance. A prominent example is particle-filled rubber, a special case of a crosslinked polymer nanocomposite, where favorable rubber-filler interactions may give rise to a nanoscale immobilized layer around the filler, including regions of intermediate mobility. Such intermediate domains may either form a separate shell-like layer or be a manifestation of dynamic heterogeneities, in which case the intermediately mobile material would be dispersed in the form of nanometer-sized subdomains. In this contribution, bidirectional proton NMR spin diffusion (SD) experiments applied to silica-filled acrylate rubber are combined with numerical simulations to provide microscopic insights into this question. While model calculations for different scenarios fit the given data similarly well for longer SD mixing time, the short-time data do support the presence of dynamic heterogeneities.
Asunto(s)
Nanocompuestos , Polímeros , Interfase , Goma , Dióxido de SilicioRESUMEN
We correlate the terminal relaxation of supramolecular polymer networks, based on unentangled telechelic poly(isobutylene) linear chains forming micellar end-group clusters, with the microscopic chain dynamics as probed by proton NMR. For a series of samples with increasing molecular weight, we find a quantitative agreement between the terminal relaxation times and their activation energies provided by rheology and NMR. This finding corroborates the validity of the transient-network model and the special case of the sticky Rouse model, and dismisses more dedicated approaches treating the terminal relaxation in terms of micellar rearrangements. Also, we confirm previous results showing reduction of the activation energy of supramolecular dissociation with increasing molecular weight and explain this trend with an increasing elastic penalty, as corroborated by small angle x-ray scattering data.
RESUMEN
Unusual structures and dynamic properties found in polymer nanocomposites (PNCs) are often attributed to immobilized (adsorbed) polymers at nanoparticle-polymer interfaces, which are responsible for reducing the intrinsic incompatibility between nanoparticles and polymers in PNCs. Although tremendous effort has been made to characterize the presence of immobilized polymers, a systematic understanding of the structure and dynamics under different processing conditions is still lacking. Here, we report that the initial dispersing solvent, which is not present after producing PNCs, drives these nonequilibrium effects on polymer chain dynamics at interfaces. Employing extensive small-angle scattering, proton NMR spectroscopy, and rheometry experiments, we found that the thickness of the immobilized layer can be dependent on the initial solvent, changing the structure and the properties of the PNC significantly. In addition, we show that the outcome of the initial solvent effect becomes more effective at particle volume fractions where the immobile layers begin to interact.
RESUMEN
Solid-state near-rotary-resonance measurements of the spin-lattice relaxation rate in the rotating frame (R1ρ) is a powerful NMR technique for studying molecular dynamics in the microsecond time scale. The small difference between the spin-lock (SL) and magic-angle-spinning (MAS) frequencies allows sampling very slow motions, at the same time it brings up some methodological challenges. In this work, several issues affecting correct measurements and analysis of 15N R1ρ data are considered in detail. Among them are signal amplitude as a function of the difference between SL and MAS frequencies, "dead time" in the initial part of the relaxation decay caused by transient spin-dynamic oscillations, measurements under HORROR condition and proper treatment of the multi-exponential relaxation decays. The multiple 15N R1ρ measurements at different SL fields and temperatures have been conducted in 1D mode (i.e. without site-specific resolution) for a set of four different microcrystalline protein samples (GB1, SH3, MPD-ubiquitin and cubic-PEG-ubiquitin) to study the overall protein rocking in a crystal. While the amplitude of this motion varies very significantly, its correlation time for all four sample is practically the same, 30-50 µs. The amplitude of the rocking motion correlates with the packing density of a protein crystal. It has been suggested that the rocking motion is not diffusive but likely a jump-like dynamic process.
Asunto(s)
Simulación de Dinámica Molecular , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Cristalización , Movimiento (Física) , Receptores de GABA-B/química , Factores de Tiempo , Ubiquitina/química , Dominios Homologos srcRESUMEN
The eye lens contains a highly concentrated, polydisperse mixture of crystallins, and a loss in transparency during cataract formation is attributed to the aggregation of these proteins. Most biochemical and biophysical studies of crystallins have been performed in diluted samples because of various physical limitations of the respective method at physiological concentrations of up to 200-400â¯mg/mL. We introduce a straightforward proton NMR transverse relaxometry method to quantify simultaneously proteins in the dissolved and aggregated states at these elevated concentrations, because these states significantly differ in their transverse relaxation properties. The key feature of this method is a direct observation of the protein signal in a wide range of relaxation delays, from few microseconds up to few hundred milliseconds. We applied this method to follow heat-induced aggregation of bovine α- and γB-crystallin between 60 and 200â¯mg/mL. We find that at 60⯰C, a temperature where both crystallins still comprise a native tertiary structure, γB-crystallin aggregated at these high protein concentrations with a time constant of about 30-40â¯h. α-crystallin remained soluble at 60â¯mg/mL but formed a transparent gel at 200â¯mg/mL. This quantitative NMR method can be applied to investigations of other proteins and their mixtures under various aggregation conditions.
RESUMEN
Polymer-network gels often exhibit complex nanoscopic architectures. First, the polymer-network mesh topology on scales of 1-10 nm is usually not uniform and regular, but disordered and irregular. Second, on top of that, many swollen polymer networks display spatial inhomogeneity of their polymer segmental density and crosslinking density on scales of 10-100 nm. This multi-scale structural complexity affects the permeability, mechanical strength, and optical clarity of the polymer gels, which is of central relevance for their performance in popular applications. As a result, there is a need to characterize the polymer network structures on multiple scales. On the scale of the spatial inhomogeneity of crosslinking, 10-100 nm, scattering of neutrons, X-rays, and light has extraordinary utility and is well established. On the scale of the mesh topology, 1-10 nm, in contrast, experimental techniques are less established. This review intends to close this gap by reviewing two intrinsically dynamic methods that yield information on polymer network mesh structures. First, NMR-based assessment of residual dipolar proton-spin couplings, which arise upon the introduction of crosslinks into a liquidlike polymer system to impart partial solidlike characteristics, is suitable to quantitatively assess network meshes and local network defects. Second, diffusive penetration of molecular, macromolecular, and mesoscopic colloidal probes through a polymer gel provides insight into its obstructing network mesh structure and its potential irregularity. Either method is highly synergistic to scattering-based assessment of the network structures on larger scales, and in concert, a rich picture on the nano- and mesoscopic gel topology is obtained.
RESUMEN
We demonstrate that 1H-13C solid-state MAS NMR is suitable to detect liquid disordered/liquid ordered phase coexistence in a DOPC/DPPC/cholesterol mixture with natural abundance of isotopes as an alternative to 2H NMR. Such methodology is potentially applicable to study lipid phase coexistence phenomena in biological matter with high lipid content, e.g. lung surfactant or myelin, for which isotopic labeling is not possible.
Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Técnicas de Química Analítica/métodos , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/análisis , Transición de FaseRESUMEN
The robust synthetic flexibility of metal-organic frameworks (MOFs) offers a promising class of tailorable materials, for which the ability to tune specific physicochemical properties is highly desired. This is achievable only through a thorough description of the consequences for chemical manipulations both in structure and dynamics. Magic angle spinning solid-state NMR spectroscopy offers many modalities in this pursuit, particularly for dynamic studies. Herein, we employ a separated-local-field NMR approach to show how specific intraframework chemical modifications to MOF UiO-66 heavily modulate the dynamic evolution of the organic ring moiety over several orders of magnitude.
Asunto(s)
Teoría Funcional de la Densidad , Estructuras Metalorgánicas/química , Espectroscopía de Resonancia Magnética , Estructuras Metalorgánicas/síntesis química , Modelos Moleculares , RotaciónRESUMEN
A series of poly(ethylene oxide) nanocomposites with spherical silica was studied by proton NMR spectroscopy, identifying and characterizing reduced-mobility components arising from either room-temperature lateral adsorption or possibly end-group mediated high-temperature bonding to the silica surface. The study complements earlier neutron-scattering results for some of the samples. The estimated thickness of a layer characterized by significant internal mobility resembling backbone rotation ranges from 2 nm for longer (20 k) chains adsorbed on 42 nm diameter particles to 0.5 nm and below for shorter (2 k) chains on 13 nm particles. In the latter case, even lower adsorbed amounts are found when hydroxy endgroups are replaced by methyl endgroups. Both heating and water addition do not lead to significant changes of the observables, in contrast to other systems such as acrylate polymers adsorbed to silica, where temperature- and solvent-induced softening associated with a glass transition temperature gradient was evidenced. We highlight the actual agreement and complementarity of NMR and neutron scattering results, with the earlier ambiguities mainly arising from different sensitivities to the component fractions and the details of their mobility.
RESUMEN
In recent years, the analysis of proton double-quantum NMR build-up curves has become an important tool to quantify anisotropic mobility in different kinds of soft materials such as polymer networks or liquid crystals. In the former case, such data provides a measure of orientation-dependent residual (time-averaged) dipolar couplings arising from anisotropic segmental motions, informing about the length and the state of local stretching of the network chains. Previous studies of macroscopically ordered, i.e. stretched, networks were subject to the limitation that a detailed build-up curve analysis on the basis of a universal "Abragam-like" (A-l) build-up function valid for a proton multi-spin system was only possible for an isotropic orientation-averaged response. This situation is here remedied by introducing a generic orientation-dependent build-up function for an anisotropically mobile protonated molecular segment. We discuss an application to the modeling of data for a stretched network measured at different orientations with respect to the magnetic field, and present a validation by fitting data of different liquid-crystal molecules oriented in the magnetic field.
RESUMEN
Phase segregation between different macromolecules and specific weak interactions are the basis of molecular organization in many biological systems, which are held together by attractive hydrogen bonds (H-bonds) and dissociated by phase segregation. We report significant changes in the association behavior of covalent H-bonds by the phase of attached polymer chains. Depending on the aggregation state, we observed either intact H-bonds despite segregation of the phases, or macrophase separation with a larger amount of H-bonding dissociation.
RESUMEN
Molecular motion of biopolymers in vivo is known to be strongly influenced by the high concentration of organic matter inside cells, usually referred to as crowding conditions. To elucidate the effect of intermolecular interactions on Brownian motion of proteins, we performed (1)H pulsed-field gradient NMR and fluorescence correlation spectroscopy (FCS) experiments combined with small-angle X-ray scattering (SAXS) and viscosity measurements for three proteins, αB-crystalline (αBc), bovine serum albumin, and hen egg-white lysozyme (HEWL) in aqueous solution. Our results demonstrate that long-time translational diffusion quantitatively follows the expected increase of macro-viscosity upon increasing the protein concentration in all cases, while rotational diffusion as assessed by polarized FCS and previous multi-frequency (1)H NMR relaxometry experiments reveals protein-specific behavior spanning the full range between the limiting cases of full decoupling from (αBc) and full coupling to (HEWL) the macro-viscosity. SAXS was used to study the interactions between the proteins in solution, whereby it is shown that the three cases cover the range between a weakly interacting hard-sphere system (αBc) and screened Coulomb repulsion combined with short-range attraction (HEWL). Our results, as well as insights from the recent literature, suggest that the unusual rotational-translational coupling may be due to anisotropic interactions originating from hydrodynamic shape effects combined with high charge and possibly a patchy charge distribution.
Asunto(s)
Transporte de Proteínas , Proteínas/química , Animales , Bovinos , Pollos , Difusión , Clara de Huevo/química , Hidrodinámica , Espectroscopía de Resonancia Magnética , Muramidasa/química , Rotación , Dispersión de Radiación , Dispersión del Ángulo Pequeño , Albúmina Sérica/química , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia , Viscosidad , Difracción de Rayos X , Cadena B de alfa-Cristalina/química , alfa-Cristalinas/químicaRESUMEN
A novel class of rigid-rod bolapolyphilic molecules with three philicities (rigid aromatic core, mobile aliphatic side chains, polar end groups) has recently been demonstrated to incorporate into and span lipid membranes, and to exhibit a rich variety of self-organization modes, including macroscopically ordered snowflake structures with 6-fold symmetry. In order to support a structural model and to better understand the self-organization on a molecular scale, we here report on proton and carbon-13 high-resolution magic-angle spinning solid-state NMR investigations of two different bolapolyphiles (BPs) in model membranes of two different phospholipids (DPPC, DOPC). We elucidate the changes in molecular dynamics associated with three new phase transitions detected by calorimetry in composite membranes of different composition, namely, a change in π-π-packing, the melting of lipid tails associated with the superstructure, and the dissolution and onset of free rotation of the BPs. We derive dynamic order parameters associated with different H-H and C-H bond directions of the BPs, demonstrating that the aromatic cores are well packed below the final phase transition, showing only 180° flips of the phenyl ring, and that they perform free rotations with additional oscillations of the long axis when dissolved in the fluid membrane. Our data suggests that BPs not only form ordered superstructures, but also rather homogeneously dispersed π-packed filaments within the lipid gel phase, thus reducing the corrugation of large vesicles.
Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Transición de FaseRESUMEN
Oxidized phospholipids occur naturally in conditions of oxidative stress and have been suggested to play an important role in a number of pathological conditions due to their effects on a lipid membrane acyl chain orientation, ordering, and permeability. Here we investigate the effect of the oxidized phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) on a model membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using a combination of (13)C-(1)H dipolar-recoupling nuclear magnetic resonance (NMR) experiments and united-atom molecular dynamics (MD) simulations. The obtained experimental order parameter SCH profiles show that the presence of 30 mol % PazePC in the bilayer significantly increases the gauche content of the POPC acyl chains, therefore decreasing the thickness of the bilayer, although with no stable bilayer pore formation. The MD simulations reproduce the disordering effect and indicate that the orientation of the azelaoyl chain is highly dependent on its protonation state with acyl chain reversal for fully deprotonated states and a parallel orientation along the interfacial plane for fully protonated states, deprotonated and protonated azelaoyl chains having negative and positive SCH profiles, respectively. Only fully or nearly fully protonated azelaoyl chain are observed in the (13)C-(1)H dipolar-recoupling NMR experiments. The experiments show positive SCH values for the azelaoyl segments confirming for the first time that oxidized chains with polar termini adopt a parallel orientation to the bilayer plane as predicted in MD simulations.
Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Fosforilcolina/químicaRESUMEN
Knowledge about the global translational and rotational motion of proteins under crowded conditions is highly relevant for understanding the function of proteins in vivo. This holds in particular for human αB-crystallin, which is strongly crowded in vivo and inter alia responsible for preventing cataracts. Quantitative information on translational and rotational diffusion is not readily available, and we here demonstrate an approach that combines pulsed-field-gradient NMR for translational diffusion and proton T1ρ/T2 relaxation-time measurements for rotational diffusion, thus overcoming obstacles encountered in previous studies. The relaxation times measured at variable temperature provide a quantitative measure of the correlation function of protein tumbling, which cannot be approximated by a single exponential, because two components are needed for a minimal and adequate description of the data. We find that at high protein concentrations, rotational diffusion is decoupled from translational diffusion, the latter following the macroscopic viscosity change almost quantitatively, resembling the behavior of spherical colloids. Analysis of data reported in the literature shows that well-packed globular proteins follow a scaling relation between the hydrodynamic radius and the molar mass, Rh â¼ M(1/d), with a fractal dimension of d â¼ 2.5 rather than 3. Despite its oligomeric nature, Rh of αB-crystallin as derived from both NMR methods is found to be fully consistent with this relation.
Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Cadena B de alfa-Cristalina/química , Difusión , Humanos , Rotación , ViscosidadRESUMEN
Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component ("long tail") of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the relaxation rate ratio R1/R2 assumes a single-component tumbling correlation function, and thus can provide incorrect results as soon as the "long tail" is of relevance. This effect, however, has been underestimated in many instances. In this work we present a detailed systematic study of the tumbling correlation function of two proteins, lysozyme and bovine serum albumin, at different concentrations and temperatures using proton field-cycling relaxometry combined with R1ρ and R2 measurements. Unlike high-field NMR relaxation methods, these techniques enable a detailed study of dynamics on a time scale longer than the normal protein tumbling correlation time and, thus, a reliable estimate of the parameters of the "long tail". In this work we analyze the concentration dependence of the intensity and correlation time of the slow component and perform simulations of high-field (15)N NMR relaxation data demonstrating the importance of taking the "long tail" in the analysis into account.
Asunto(s)
Proteínas Aviares/química , Muramidasa/química , Animales , Pollos , Óxido de Deuterio/química , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Soluciones , Solventes/químicaRESUMEN
A novel class of bolapolyphile (BP) molecules are shown to integrate into phospholipid bilayers and self-assemble into unique sixfold symmetric domains of snowflake-like dendritic shapes. The BPs comprise three philicities: a lipophilic, rigid, π-π stacking core; two flexible lipophilic side chains; and two hydrophilic, hydrogen-bonding head groups. Confocal microscopy, differential scanning calorimetry, XRD, and solid-state NMR spectroscopy confirm BP-rich domains with transmembrane-oriented BPs and three to four lipid molecules per BP. Both species remain well organized even above the main 1,2-dipalmitoyl-sn-glycero-3-phosphocholine transition. The BP molecules only dissolve in the fluid membrane above 70 °C. Structural variations of the BP demonstrate that head-group hydrogen bonding is a prerequisite for domain formation. Independent of the head group, the BPs reduce membrane corrugation. In conclusion, the BPs form nanofilaments by π stacking of aromatic cores, which reduce membrane corrugation and possibly fuse into a hexagonal network in the dendritic domains.