Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562259

RESUMEN

Cannabis use among pregnant women is increasing worldwide along with permissive sociocultural attitudes toward it. Prenatal cannabis exposure (PCE), however, is associated with adverse outcome among offspring, ranging from reduced birth weight to child psychopathology. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of PCE, exhibit extensive molecular, cellular, and synaptic changes in dopamine neurons of the ventral tegmental area (VTA), resulting in a susceptible mesolimbic dopamine system associated with a psychotic-like endophenotype. This phenotype only reveals itself upon a single exposure to THC in males but not females. Here, we characterized the impact of PCE on female behaviors and mesolimbic dopamine system function by combining in vivo single-unit extracellular recordings in anesthetized animals and ex vivo patch clamp recordings, along with neurochemical and behavioral analyses. We find that PCE female offspring do not show any spontaneous or THC-induced behavioral disease-relevant phenotypes. The THC-induced increase in dopamine levels in nucleus accumbens was reduced in PCE female offspring, even when VTA dopamine activity in vivo and ex vivo did not differ compared to control. These findings indicate that PCE impacts mesolimbic dopamine function and its related behavioral domains in a sex-dependent manner and warrant further investigations to decipher the mechanisms determining this sex-related protective effect from intrauterine THC exposure.


Asunto(s)
Conducta Animal/efectos de los fármacos , Dopamina/metabolismo , Dronabinol/toxicidad , Sistema Límbico/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/patología , Área Tegmental Ventral/efectos de los fármacos , Animales , Femenino , Alucinógenos/toxicidad , Sistema Límbico/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/patología
2.
Addict Biol ; 23(2): 556-568, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28429835

RESUMEN

Dopamine agonists have been proposed as therapeutic tools for cocaine addiction. We have recently demonstrated that indirect dopamine agonists, including levodopa (L-DOPA), markedly increase cocaine-induced dopamine release in the medial prefrontal cortex (mPFC) of rats leading to the suppression of cocaine-seeking behavior. This study was aimed to understand the behavioral and neurochemical effects of L-DOPA on cocaine-taking and cocaine-seeking in rats. After reaching a stable pattern of intravenous cocaine self-administration under a continuous fixed ratio (FR-1) schedule of reinforcement, male rats were treated with L-DOPA at different steps of the self-administration protocol. We found that L-DOPA reduced cocaine self-administration under FR-1 schedule of reinforcement and decreased the breaking points and the amount of cocaine self-administered under the progressive ratio schedule of reinforcement. Levodopa also decreased cocaine-seeking behavior both in a saline substitution test and in the cue priming-induced reinstatement test, without affecting general motor activity. Importantly, L-DOPA greatly potentiated cocaine-induced dopamine release in the mPFC of self-administering rats while reducing their cocaine intake. In the same brain area, L-DOPA also increased dopamine levels during cue priming-induced reinstatement of cocaine-seeking behavior. The potentiating effect was also evident in the mPFC but not nucleus accumbens core of drug-naïve rats passively administered with cocaine. Altogether, these findings demonstrate that L-DOPA efficaciously reduces the reinforcing and motivational effects of cocaine likely potentiating dopamine transmission in the mPFC. Its ability to prevent cue priming-induced reinstatement of cocaine-seeking suggests that it might be effective in reducing the risk to relapse to cocaine in abstinent patients.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/administración & dosificación , Dopaminérgicos/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación , Dopamina/metabolismo , Levodopa/farmacología , Corteza Prefrontal/efectos de los fármacos , Animales , Condicionamiento Operante , Corteza Prefrontal/metabolismo , Ratas , Autoadministración
3.
Addict Biol ; 21(1): 61-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25135633

RESUMEN

Previous investigations indicate that the dopamine-ß-hydroxylase (DBH) inhibitors disulfiram and nepicastat suppress cocaine-primed reinstatement of cocaine self-administration behaviour. Moreover, both inhibitors increase dopamine release in the rat medial prefrontal cortex (mPFC) and markedly potentiate cocaine-induced dopamine release in this region. This study was aimed to clarify if the suppressant effect of DBH inhibitors on cocaine reinstatement was mediated by the high extracellular dopamine in the rat mPFC leading to a supra-maximal stimulation of D1 receptors in the dorsal division of mPFC, an area critical for reinstatement of cocaine-seeking behaviour. In line with previous microdialysis studies in drug-naïve animals, both DBH inhibitors potentiated cocaine-induced dopamine release in the mPFC, in the same animals in which they also suppressed reinstatement of cocaine seeking. Similar to the DBH inhibitors, L-DOPA potentiated cocaine-induced dopamine release in the mPFC and suppressed cocaine-induced reinstatement of cocaine-seeking behaviour. The bilateral microinfusion of the D1 receptor antagonist SCH 23390 into the dorsal mPFC not only prevented cocaine-induced reinstatement of cocaine seeking but also reverted both disulfiram- and L-DOPA-induced suppression of reinstatement. Moreover, the bilateral microinfusion of the D1 receptor agonist chloro-APB (SKF 82958) into the dorsal mPFC markedly attenuated cocaine-induced reinstatement of cocaine seeking. These results suggest that stimulation of D1 receptors in the dorsal mPFC plays a crucial role in cocaine-induced reinstatement of cocaine seeking, whereas the suppressant effect of DBH inhibitors and L-DOPA on drug-induced reinstatement is mediated by a supra-maximal stimulation of D1 receptors leading to their inactivation.


Asunto(s)
Cocaína/administración & dosificación , Disulfiram/farmacología , Dopaminérgicos/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación , Dopamina beta-Hidroxilasa/antagonistas & inhibidores , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Imidazoles/farmacología , Levodopa/farmacología , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/antagonistas & inhibidores , Tionas/farmacología , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/farmacología , Dopamina/metabolismo , Extinción Psicológica , Masculino , Microdiálisis , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/agonistas , Autoadministración
4.
Addict Biol ; 19(4): 612-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23289939

RESUMEN

The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex.


Asunto(s)
Inhibidores de Captación de Dopamina/administración & dosificación , Dopamina/metabolismo , Imidazoles/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Tionas/farmacología , Anfetamina/administración & dosificación , Animales , Cocaína/administración & dosificación , Sinergismo Farmacológico , Masculino , Microdiálisis/métodos , Norepinefrina/metabolismo , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
5.
Front Pharmacol ; 14: 1238115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680715

RESUMEN

Experimental and clinical evidence indicates a deficit of release and function of dopamine in schizophrenia and suggests that α2-adrenoceptor antagonists rescue dopamine deficit and improve the antipsychotic efficacy of D2-receptor antagonists. In anesthetized male rats, we investigated how the blockade of α2- and D2-receptors by atipamezole and raclopride, respectively, modified the firing of noradrenergic neurons in the locus coeruleus (LC) and dopaminergic neurons in the ventral tegmental area (VTA). In freely moving rats, we studied how atipamezole and raclopride modified extracellular noradrenaline, dopamine, and DOPAC levels in the medial prefrontal cortex (mPFC) through microdialysis. When administered alone, atipamezole activated LC noradrenaline but not VTA dopamine cell firing. Combined with raclopride, atipamezole activated dopamine cell firing above the level produced by raclopride. Atipamezole increased extracellular dopamine to the same level, whether administered alone or combined with raclopride. In the presence of the noradrenaline transporter (NET) inhibitor, atipamezole combined with raclopride increased extracellular dopamine beyond the level produced by either compound administered alone. The results suggest that a) the D2-autoreceptor blockade is required for LC noradrenaline to activate VTA cell firing; b) the level of dopamine released from dopaminergic terminals is determined by NET; c) the elevation of extracellular dopamine levels in the mPFC is the resultant of dopamine uptake and release from noradrenergic terminals, independent of dopaminergic cell firing and release; and d) LC noradrenergic neurons are an important target for treatments to improve the prefrontal deficit of dopamine in neuropsychiatric pathologies.

6.
Neuropharmacology ; 217: 109192, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850212

RESUMEN

Neurochemical, electrophysiological and behavioral evidence indicate that the potent α2-adrenoceptor antagonist RS 79948 is also a dopamine (DA) D2 receptor antagonist. Thus, results from ligand binding and adenylate cyclase activity indicate that RS 79948 binds to D2 receptors and antagonized D2 receptor-mediated inhibition of cAMP synthesis at nanomolar concentrations. Results from microdialysis indicated that RS 79948 shared with the selective α2-adrenergic antagonist atipamezole the ability to increase the co-release of DA and norepinephrine (NE) from noradrenergic terminals in the medial prefrontal cortex (mPFC), except that RS 79948-induced DA release persisted after noradrenergic denervation, unlike atipamezole effect, indicating that RS 79948 releases DA from dopaminergic terminals as well. Similarly to the D2 antagonist raclopride, but unlike atipamezole, RS 79948 increased extracellular DA and DOPAC in the caudate nucleus. Electrophysiological results indicate that RS 79948 shared with raclopride the ability to activate the firing of ventral tegmental area (VTA) DA neurons, while atipamezole was ineffective. Results from behavioral studies indicated that RS 79948 exerted effects mediated by independent, cooperative and contrasting inhibition of α2-and D2 receptors. Thus, RS 79948, but not atipamezole, prevented D2-autoreceptor mediated hypomotility produced by a small dose of quinpirole. RS 79948 potentiated, more effectively than atipamezole, quinpirole-induced motor stimulation. RS 79948 antagonized, less effectively than atipamezole, raclopride-induced catalepsy. Future studies should clarify if the dual α2-adrenoceptor- and D2-receptor antagonistic action might endow RS 79948 with potential therapeutic relevance in the treatment of schizophrenia, drug dependence, depression and Parkinson's disease.


Asunto(s)
Dopamina , Receptores Dopaminérgicos , Animales , Dopamina/metabolismo , Isoquinolinas , Naftiridinas , Norepinefrina/metabolismo , Quinpirol , Racloprida/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Dopamina D1
7.
Front Pharmacol ; 11: 588160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071798

RESUMEN

Previous results indicate that dopamine (DA) release in the medial prefrontal cortex (mPFC) is modified by α2 adrenoceptor- but not D2 DA receptor- agonists and antagonists, suggesting that DA measured by microdialysis in the mPFC originates from noradrenergic terminals. Accordingly, noradrenergic denervation was found to prevent α2-receptor-mediated rise and fall of extracellular DA induced by atipamezole and clonidine, respectively, in the mPFC. The present study was aimed to determine whether DA released by dopaminergic terminals in the mPFC is not detected by in vivo microdialysis because is readily taken up by norepinephrine transporter (NET). Accordingly, the D2-antagonist raclopride increased the electrical activity of DA neurons in the ventral tegmental area (VTA) and enhanced extracellular DOPAC but failed to modify DA in the mPFC. However, in rats whose NET was either inactivated by nisoxetine or eliminated by noradrenergic denervation, raclopride still elevated extracellular DOPAC and activated dopaminergic activity, but also increased DA. Conversely, the D2-receptor agonist quinpirole reduced DOPAC but failed to modify DA in the mPFC in control rats. However, in rats whose NET was eliminated by noradrenergic denervation or inhibited by locally perfused nisoxetine, quinpirole maintained its ability to reduce DOPAC but acquired that of reducing DA. Moreover, raclopride and quinpirole, when locally perfused into the mPFC of rats subjected to noradrenergic denervation, were able to increase and decrease, respectively, extracellular DA levels, while being ineffective in control rats. Transient inactivation of noradrenergic neurons by clonidine infusion into the locus coeruleus, a condition where NET is preserved, was found to reduce extracellular NE and DA in the mPFC, whereas noradrenergic denervation, a condition where NET is eliminated, almost totally depleted extracellular NE but increased DA. Both transient inactivation and denervation of noradrenergic neurons were found to reduce the number of spontaneously active DA neurons and their bursting activity in the VTA. The results indicate that DA released in the mPFC by dopaminergic terminals is not detected by microdialysis unless DA clearance from extracellular space is inactivated. They support the hypothesis that noradrenergic terminals are the main source of DA measured by microdialysis in the mPFC during physiologically relevant activities.

8.
J Neurochem ; 108(3): 611-20, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19054277

RESUMEN

The isolation-rearing (IR) paradigm, consisting of the social deprivation for 6-9 weeks after weaning, induces a spectrum of aberrant behaviors in adult rats. Some of these alterations such as sensorimotor gating deficits are reminiscent of the dysfunctions observed in schizophrenia patients. Although gating impairments in IR rats have been linked to impairments in the cortico-mesolimbic system, the specific molecular mechanisms underlying this relation are unclear. To elucidate the neurochemical modifications underlying the gating disturbances exhibited by IR rats, we compared their pre-pulse inhibition (PPI) of the acoustic startle reflex with that of socially reared (SR) controls, and correlated this index to the results of proteomic analyses in prefrontal cortex and nucleus accumbens from both groups. As expected, IR rats exhibited significantly lower startle amplitude and PPI than their SR counterparts. Following behavioral testing, IR and SR rats were killed and protein expression profiles of their brain regions were examined using two-dimensional electrophoresis based proteomics. Image analysis in the Coomassie blue-stained gel revealed that three protein spots were differentially expressed in the nucleus accumbens of IR and SR rats. Mass spectrometry (matrix-assisted laser desorption ionization-time of flight and MS/MS) identified these spots as heat shock protein 60 (HSP60), alpha-synuclein (alpha-syn), and 14-3-3 protein zeta/delta. While accumbal levels of HSP60 was decreased in IR rats, alpha-syn and 14-3-3 proteins were significantly increased in IR in comparison with SR controls. Notably, these two last alterations were significantly correlated with different loudness intensity-specific PPI deficits in IR rats. In view of the role of these proteins in synaptic trafficking and dopaminergic regulation, these findings might provide a neurochemical foundation for the gating alterations and psychotic-like behaviors in IR rats.


Asunto(s)
Conducta Animal/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Núcleo Accumbens/metabolismo , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Psicología del Esquizofrénico , Aislamiento Social/psicología , Proteínas 14-3-3/metabolismo , Animales , Química Encefálica/genética , Química Encefálica/fisiología , Interpretación Estadística de Datos , Electroforesis en Gel Bidimensional , Hibridación in Situ , Espectrometría de Masas , Corteza Prefrontal/metabolismo , Proteoma/genética , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-30472147

RESUMEN

In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Norepinefrina/metabolismo , Corteza Prefrontal/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Neuronas Adrenérgicas/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Fluoxetina/análogos & derivados , Fluoxetina/farmacología , Imidazoles/farmacología , Masculino , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley
10.
Nat Neurosci ; 22(12): 1975-1985, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611707

RESUMEN

The increased legal availability of cannabis has led to a common misconception that it is a safe natural remedy for, among others, pregnancy-related ailments such as morning sickness. Emerging clinical evidence, however, indicates that prenatal cannabis exposure (PCE) predisposes offspring to various neuropsychiatric disorders linked to aberrant dopaminergic function. Yet, our knowledge of how cannabis exposure affects the maturation of this neuromodulatory system remains limited. Here, we show that male, but not female, offspring of Δ9-tetrahydrocannabinol (THC)-exposed dams, a rat PCE model, exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area, including altered excitatory-to-inhibitory balance and switched polarity of long-term synaptic plasticity. The resulting hyperdopaminergic state leads to increased behavioral sensitivity to acute THC exposure during pre-adolescence. The neurosteroid pregnenolone, a US Food and Drug Administration (FDA) approved drug, rescues synaptic defects and normalizes dopaminergic activity and behavior in PCE offspring, thus suggesting a therapeutic approach for offspring exposed to cannabis during pregnancy.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Dronabinol/efectos adversos , Dronabinol/farmacología , Pregnenolona/farmacología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Dronabinol/antagonistas & inhibidores , Endofenotipos , Femenino , Aprendizaje por Laberinto/efectos de los fármacos , Potenciales de la Membrana/fisiología , Actividad Motora/efectos de los fármacos , Inhibición Neural/fisiología , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/metabolismo , Embarazo , Inhibición Prepulso/efectos de los fármacos , Inhibición Prepulso/fisiología , Ratas , Asunción de Riesgos , Filtrado Sensorial/efectos de los fármacos , Filtrado Sensorial/fisiología , Caracteres Sexuales , Área Tegmental Ventral/metabolismo
11.
J Neurosci Res ; 86(7): 1647-58, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18189323

RESUMEN

Dopamine and noradrenaline are both involved in modulation of superior cognitive functions that are mainly dependent on frontal cortex activity. Experimental evidence points to parallel variations in extracellular concentrations of catecholamines in the cerebral cortex, which leads us to hypothesize their corelease from noradrenergic neurons. This study aimed to verify this hypothesis, by means of cerebral microdialysis following destruction of dopaminergic innervation in rats. The unilateral injury of dopaminergic neurons, by 6-hydroxydopamine injection in the ventral tegmental area, dramatically reduced the immunoreactivity for dopamine transporter in the cerebral hemisphere ipsilateral to the lesion. Tissue dopamine content in the ipsilateral nucleus accumbens and medial prefrontal and parietal cortex was also profoundly decreased, whereas noradrenaline was only slightly affected. Despite the lower tissue content in the denervated side, the extracellular dopamine level was not changed in the cortex, although it was markedly decreased in the nucleus accumbens ipsilateral to the lesion. The effect of drugs selective for D(2)-dopaminergic (haloperidol) or alpha(2)-noradrenergic (RS 79948) receptors was verified. Haloperidol failed to modify extracellular dopamine in either cortex but increased it in the nucleus accumbens, such an increase being greatly reduced in the denervated side. On the other hand, RS 79948 increased extracellular dopamine and DOPAC in all areas tested, the increases being of the same degree in both intact and lesioned sides. The results strongly support the hypothesis that the majority of extracellular dopamine in the cortex, unlike that in the nucleus accumbens, originates from noradrenergic terminals.


Asunto(s)
Corteza Cerebral/metabolismo , Dopamina/metabolismo , Oxidopamina/toxicidad , Simpaticolíticos/toxicidad , Área Tegmental Ventral/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Análisis de Varianza , Animales , Corteza Cerebral/citología , Antagonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Interacciones Farmacológicas , Líquido Extracelular/metabolismo , Haloperidol/farmacología , Isoquinolinas/farmacología , Masculino , Microdiálisis/métodos , Naftiridinas/farmacología , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/lesiones , Área Tegmental Ventral/fisiopatología
12.
Psychoneuroendocrinology ; 63: 59-67, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26415119

RESUMEN

Neurosteroids exert diverse modulatory actions on dopamine neurotransmission and signaling. We previously documented that the enzyme 5α-reductase, which catalyzes the main rate-limiting step in neurosteroid synthesis, is required for the behavioral responses of Sprague-Dawley rats to non-selective dopaminergic agonists, such as the D1-D2 receptor agonist apomorphine. Specifically, systemic and intra-accumbal administrations of the 5α-reductase inhibitor finasteride countered apomorphine-induced deficits of sensorimotor gating, as measured by the prepulse inhibition (PPI) of the startle reflex; the classes of dopamine receptors involved in these effects, however, remain unknown. Prior rodent studies have revealed that the contributions of dopamine receptors to PPI regulation vary depending on the genetic background; thus, we analyzed the effect of finasteride on the PPI deficits induced by selective dopamine receptor agonists in Long-Evans (a strain exhibiting PPI deficits in response to both D1 and D2 receptor agonists) and Sprague-Dawley rats (which display PPI reductions following treatment with D2, and D3, but not D1 receptor agonists). In Long-Evans rats, finasteride opposed the PPI deficits induced by activation of D1, but not D2 receptors; conversely, in Sprague-Dawley rats, finasteride prevented the reductions in %PPI and accumbal dopamine extracellular levels caused by selective stimulation of D3, but not D2 receptors; however, the effects on %PPI were not confirmed by analyses on absolute PPI values. Our findings suggest that 5α-reductase modulates the effects of D1, but not D2 receptor agonists on sensorimotor gating. These data may help elucidate the role of neurosteroids in neuropsychiatric disorders featuring PPI deficits, including schizophrenia and Tourette syndrome.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Inhibidores de 5-alfa-Reductasa/farmacología , Agonistas de Dopamina/farmacología , Núcleo Accumbens/efectos de los fármacos , Inhibición Prepulso/efectos de los fármacos , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D3/efectos de los fármacos , Animales , Finasterida/farmacología , Masculino , Microdiálisis , Núcleo Accumbens/metabolismo , Inhibición Prepulso/fisiología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Filtrado Sensorial/efectos de los fármacos , Filtrado Sensorial/fisiología
13.
BMC Neurosci ; 6: 31, 2005 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-15865626

RESUMEN

BACKGROUND: Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. RESULTS: Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 microM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 microM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. CONCLUSION: The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled.


Asunto(s)
Corteza Cerebral/metabolismo , Dopamina/metabolismo , Locus Coeruleus/metabolismo , Norepinefrina/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Estimulación Eléctrica/métodos , Locus Coeruleus/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Tetrodotoxina/farmacología
14.
Brain Behav ; 5(10): e00393, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26516613

RESUMEN

INTRODUCTION: Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. METHODS: Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. RESULTS: Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. CONCLUSIONS: This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The results indicate that nepicastat enhances DA release from noradrenergic terminals supposedly by removing NA from α2-autoreceptors. In addition to the inhibition of DA uptake, the latter mechanism may explain the synergistic effect of cocaine on nepicastat-induced DA release.


Asunto(s)
Neuronas Adrenérgicas/efectos de los fármacos , Dopamina beta-Hidroxilasa/antagonistas & inhibidores , Dopamina/metabolismo , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Corteza Prefrontal/efectos de los fármacos , Tionas/farmacología , Neuronas Adrenérgicas/enzimología , Neuronas Adrenérgicas/metabolismo , Animales , Cocaína/administración & dosificación , Dopamina beta-Hidroxilasa/metabolismo , Inyecciones Intraventriculares , Masculino , Microdiálisis , Norepinefrina/metabolismo , Corteza Prefrontal/enzimología , Corteza Prefrontal/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/enzimología , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración
15.
Br J Pharmacol ; 140(3): 520-6, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12970091

RESUMEN

The effect on rat catalepsy induced by Delta9-tetrahydrocannabinol (Delta9-THC) in association with haloperidol (HP) or clozapine (CLOZ) administration was investigated. Delta9-THC dose-dependently increased HP (0.05-1 mg kg-1, s.c.)-induced rat catalepsy, while no catalepsy was observed after CLOZ (1-20 mg kg-1, s.c.) or Delta9-THC+CLOZ administration. The CB1 antagonist SR141716A (0.5-5 mg kg-1, i.p.) reversed the increase mediated by Delta9-THC on HP-induced catalepsy. The D2 agonist quinpirole completely reversed the catalepsy induced by both HP and HP+Delta9-THC; however, higher doses of quinpirole were needed in the presence of Delta9-THC. The M1 antagonist scopolamine and alpha2 antagonist yohimbine were able to reduce the catalepsy induced by HP and HP+Delta9-THC in a similar manner. CLOZ and the 5-HT2A/2C antagonists ritanserin, RS102221 and SB242084 were more effective in antagonizing HP than HP+Delta9-THC-induced catalepsy.7 HP and CLOZ failed to inhibit in vitro [3H]CP-55,940 binding, while Delta9-THC and SR141716A did not show an appreciable affinity for the D2 receptor. It was suggested that the different effects on rat catalepsy induced by Delta9-THC following HP or CLOZ administration may depend on the receptor-binding profiles of the two antipsychotics. The preferential use of CLOZ rather than HP in the treatment of psychotic symptoms in cannabis abusers was discussed.


Asunto(s)
Catalepsia/inducido químicamente , Clozapina/toxicidad , Dronabinol/toxicidad , Haloperidol/toxicidad , Animales , Catalepsia/metabolismo , Catalepsia/fisiopatología , Clozapina/metabolismo , Clozapina/uso terapéutico , Relación Dosis-Respuesta a Droga , Dronabinol/metabolismo , Sinergismo Farmacológico , Haloperidol/metabolismo , Haloperidol/uso terapéutico , Masculino , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
16.
Brain Res ; 998(2): 148-54, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-14751585

RESUMEN

Sardinian alcohol non-preferring (sNP) rats carry a point mutation (R100Q) in the cerebellar expressed GABAA receptor alpha6 subunit gene, leading to a higher sensitivity to ethanol and diazepam. The role of the alpha6 subunit gene cluster in the ethanol non-preferring phenotype was here investigated by measuring the levels of alpha1, alpha6 and gamma2 peptide in the cerebellum of normal (RR) and mutated (QQ) sNP rats after 2 weeks of chronic ethanol administration. Western blot analysis revealed that the alpha6 subunit is increased in RR sNP rats after chronic ethanol exposure (25.44%+/-8.69 versus control), while it remained unchanged in mutated QQ sNP rats. Interestingly, chronic ethanol administration decreased alpha1 peptide levels in the cerebellum of both rat lines to a similar extent (30.99%+/-6.74 and 27.12%+/-9.83 in RR and QQ rats, respectively), while gamma2 peptide levels remained unchanged. To further correlate the genetic and biochemical difference of the normal and mutated sNP rats with their aversive phenotype, we exposed sNP rats to a protocol of acquisition and maintenance of ethanol drinking. QQ sNP rats drank less ethanol than RR rats during the acquisition phase, but such difference was lost during the maintenance phase. These data may contribute to elucidating the mechanisms of alcohol avoidance in rat lines selected for this behavior when exposed to ethanol solution.


Asunto(s)
Alcoholismo/genética , Cerebelo/efectos de los fármacos , Etanol/farmacología , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Animales , Western Blotting , Cerebelo/metabolismo , Mutación , Ratas , Ratas Mutantes
17.
Eur J Pharmacol ; 448(2-3): 263-6, 2002 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-12144950

RESUMEN

The effects on rat serum prolactin level of the two isomers constituting the racemic form of amisulpride were compared. (S-)-amisulpride induced hyperprolactinemia at lower doses (ED(50) = 0.09 +/- 0.01 mg/kg) than racemic- (ED(50) = 0.24 +/- 0.03 mg/kg) and (R+)-amisulpride (ED(50) = 4.13 +/- 0.05 mg/kg), in accord with their affinities for pituitary dopamine D(2) receptor (K(i) = 3.8 +/- 0.2, 6.4 +/- 0.2 and 143.3 +/- 2.3 nM, respectively). At doses twice the ED(50), (S-)-amisulpride produced a maximal increase in prolactin level similar to that of the racemic form (403 +/- 21% and 425 +/- 15%, respectively), but higher than that of (R+)-amisulpride (198 +/- 8%). These results suggest that the hyperprolactinemia induced by the racemic-amisulpride is mostly due to its (S-)-isomer.


Asunto(s)
Prolactina/sangre , Sulpirida/análogos & derivados , Sulpirida/química , Sulpirida/farmacología , Amisulprida , Animales , Relación Dosis-Respuesta a Droga , Hiperprolactinemia/sangre , Hiperprolactinemia/inducido químicamente , Masculino , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Ratas , Ratas Sprague-Dawley , Estereoisomerismo
18.
Eur J Pharmacol ; 444(1-2): 69-74, 2002 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-12191584

RESUMEN

The substituted benzamide amisulpride is currently administered in its racemic form. In the present study, the biochemical and cataleptogenic profiles of the two enantiomers (R+ and S-) were compared with those of the racemic mixture. Displacement binding studies showed that the (S-)-isomer possesses an higher affinity for dopamine D2-like receptor (K(i) 5.2+/-0.4 nM) compared to (R+)-amisulpride (K(i) 244+/-12 nM) and to (RS)-amisulpride (K(i) 9.8+/-0.8 nM). In contrast, (S-)-amisulpride binds the alpha(2)-receptor with an affinity (K(i) 1528+/-45 nM) lower than that of the (R+)-isomer (K(i) 375+/-34 nM) and of (RS)-amisulpride (K(i) 783+/-27 nM). The bar test was used to evaluate the catalepsy induced by each drug. (RS)-amisulpride induced catalepsy only at very high doses (>100 mg/kg, s.c.) whereas, (S-)-amisulpride produced a catalepsy at a lower dose (30 mg/kg, s.c.) and (R+)-amisulpride did not produce any catalepsy up to the dose of 75 mg/kg. Interestingly, (R+)-amisulpride reduced the catalepsy induced by (S-)-amisulpride (50 mg/kg, s.c.) or haloperidol (0.3 mg/kg, s.c.), at the doses of 50 or 30 mg/kg, respectively. These results indicate that the weak cataleptic properties of (RS)-amisulpride might partially rely on its (R+)-isomer and provide a further explanation for the atypical properties of amisulpride as an antipsychotic.


Asunto(s)
Encéfalo/efectos de los fármacos , Catalepsia/inducido químicamente , Receptores de Dopamina D2/metabolismo , Sulpirida/análogos & derivados , Sulpirida/toxicidad , Amisulprida , Análisis de Varianza , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Sulpirida/metabolismo
19.
Eur J Pharmacol ; 447(1): 109-14, 2002 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-12106810

RESUMEN

Prolactin blood level and apomorphine-induced yawning were studied in rats treated with the substituted benzamide amisulpride in association with bromocriptine or carmoxirole; two dopamine D(2) receptor agonists with high or low propensity to cross the brain-blood barrier, respectively. Administration of amisulpride produced a maximum increase in rat serum prolactin level (315+/-18%) vs. vehicle-treated animals (ED(50)=0.25+/-0.017 mg/kg, s.c.). The concurrent administration of carmoxirole or bromocriptine completely reversed the hyperprolactinemia induced by amisulpride (0.5 mg/kg, s.c.) (ID(50)=14.9+/-0.8 mg/kg and 0.81+/-0.03 mg/kg, respectively). Carmoxirole (15 mg/kg, i.p.) did not affect yawning induced by apomorphine (0.08 mg/kg, s.c.) nor amisulpride (0.5 mg/kg, s.c.) blockade of apomorphine-induced yawning. Conversely, a significant increase in the number of yawns was observed when bromocriptine (0.8 mg/kg, i.p.) was associated with apomorphine in the absence or presence of amisulpride. These results suggested that a peripheral dopamine D(2) receptor agonists could be a useful tool in alleviating amisulpride-induced hyperprolactinemia without possibly affecting its central effect.


Asunto(s)
Antipsicóticos/farmacología , Agonistas de Dopamina/farmacología , Hiperprolactinemia/tratamiento farmacológico , Indoles/farmacología , Piridinas/farmacología , Sulpirida/análogos & derivados , Sulpirida/farmacología , Amisulprida , Animales , Antipsicóticos/efectos adversos , Unión Competitiva , Bromocriptina/farmacología , Hiperprolactinemia/inducido químicamente , Técnicas In Vitro , Masculino , Hipófisis/metabolismo , Hipófisis/ultraestructura , Prolactina/sangre , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/efectos de los fármacos , Sulpirida/efectos adversos , Sinaptosomas/metabolismo , Bostezo/efectos de los fármacos
20.
Eur J Pharmacol ; 459(1): 97-105, 2003 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-12505538

RESUMEN

Recently, the gastrointestinal pharmacology of cannabinoid CB(1) receptors has been extensively explored. We employed western blotting and immunohistochemistry techniques to study the distribution of the cannabinoid CB(1) receptor protein in the mouse gastroenteric tract. The cannabinoid CB(1) receptor peptide was detected by western blotting only in its glycosylated form (63 kDa) with a significant differential distribution. The highest levels of expression were detected in the stomach and in the colon, while the pyloric valve was devoid of any cannabinoid CB(1) receptor protein. The immunohistochemical study showed intense cannabinoid CB(1) receptor immunoreactivity in ganglia subadjacent to the gastric epithelium and in the smooth muscle layers of both the small and large intestine. Only the small intestine showed (-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)-phenyl]-4-(3-hydroxylpropyl) cyclohexan-1-ol) ([3H]CP 55,940) specific binding (27%). These receptors mediated pharmacologically significant effects since the cannabinoid CB(1) receptor agonist R(-)-7-hydroxy-delta-6-tetra-hydrocannabinol-dimethylheptyl (HU 210) dose dependently inhibited gastrointestinal transit up to 70%, while the cannabinoid CB(1) receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (SR 141716A) increased gastrointestinal transit. Moreover, the dose of 0.3 microg/kg of HU 210, devoid per se of any activity on mouse intestinal propulsion, blocked the increased gastroenteric transit induced by the cannabinoid CB(1) antagonist SR 141716A.


Asunto(s)
Sistema Digestivo/metabolismo , Dronabinol/análogos & derivados , Receptores de Droga/fisiología , Animales , Antieméticos/farmacología , Unión Competitiva , Western Blotting , Ciclohexanoles/metabolismo , Sistema Digestivo/química , Sistema Digestivo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Mucosa Gástrica/metabolismo , Tránsito Gastrointestinal/efectos de los fármacos , Inmunohistoquímica , Intestino Grueso/química , Intestino Grueso/metabolismo , Intestino Delgado/química , Intestino Delgado/metabolismo , Masculino , Ratones , Piperidinas/farmacología , Pirazoles/farmacología , Receptores de Cannabinoides , Receptores de Droga/análisis , Receptores de Droga/antagonistas & inhibidores , Rimonabant , Estómago/química , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA