Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Am Soc Nephrol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186386

RESUMEN

BACKGROUND: Inflammation is a major cause of kidney injury. The Interleukin (IL)-1 family cytokine IL-33 is released from damaged cells and modulates the immune response through its receptor ST2 expressed on many cell types, including regulatory T-cells (Tregs). While a proinflammatory role of IL-33 has been proposed, exogenous IL-33 expanded Tregs and suppressed renal inflammation. However, the contribution of endogenous IL-33/ST2 for the role of Tregs in the resolution of kidney injury has not been investigated. METHODS: We used murine renal ischemia-reperfusion injury and kidney organoids to delineate the role of the ST2 and amphiregulin (AREG) specifically in Treg cells using targeted deletion. Bulk and single-cell RNA sequencing was performed on flow-sorted Tregs from spleen and CD4 T-cells from post-ischemic kidneys respectively. The protective role of ST2-sufficient Tregs was analyzed using a novel co-culture system of syngeneic kidney organoids and Treg cells under hypoxic conditions. RESULTS: Bulk RNA-sequencing of splenic and single-cell-RNA-sequencing of kidney T-cells showed that ST2+ Tregs are enriched for genes related to Treg proliferation and function. Genes for reparative factors such as AREG were also enriched in ST2+ Tregs. Treg-specific deletion of ST2 or AREG exacerbated kidney injury and fibrosis in the unilateral ischemia reperfusion injury model. In co-culture studies, WT but not ST2-deficient Tregs preserved the hypoxia-induced loss of kidney-organoid viability, which was restored by AREG supplementation. CONCLUSIONS: Our study identified the role of the IL-33/ST2 pathway in Tregs for resolution of kidney injury. The transcriptome of ST2+ Tregs was enriched for reparative factors including AREG. Lack of ST2 or AREG in Tregs worsened kidney injury. Tregs protected kidney organoids from hypoxia in ST2 and AREG-dependent manner. Thus Treg-based approaches could be of benefit for resolution of renal injury.

2.
Eur J Immunol ; 52(5): 825-834, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35112355

RESUMEN

The Three Prime Repair EXonuclease I (TREX1) is critical for degrading post-apoptosis DNA. Mice expressing catalytically inactive TREX1 (TREX1 D18N) develop lupus-like autoimmunity due to chronic sensing of undegraded TREX1 DNA substrates, production of the inflammatory cytokines, and the inappropriate activation of innate and adaptive immunity. This study aimed to investigate Thelper (Th) dysregulation in the TREX1 D18N model system as a potential mechanism for lupus-like autoimmunity. Comparison of immune cells in secondary lymphoid organs, spleen and peripheral lymph nodes (LNs) between TREX1 D18N mice and the TREX1 null mice revealed that the TREX1 D18N mice exhibit a Th1 bias. Additionally, the T-follicular helper cells (Tfh) and the germinal celter (GC) B cells were also elevated in the TREX1 D18N mice. Targeting Bcl6, a lineage-defining transcription factor for Tfh and GC B cells, with a commercially available Bcl6 inhibitor, FX1, attenuated Tfh, GC, and Th1 responses, and rescued TREX1 D18N mice from autoimmunity. The study presents Tfh and GC B-cell responses as potential targets in autoimmunity and that Bcl6 inhibitors may offer therapeutic approach in TREX1-associated or other lupus-like diseases.


Asunto(s)
Autoinmunidad , Centro Germinal , Animales , Diferenciación Celular , ADN , Modelos Animales de Enfermedad , Exodesoxirribonucleasas , Ratones , Ratones Noqueados , Fosfoproteínas , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Células T Auxiliares Foliculares , Linfocitos T Colaboradores-Inductores
3.
Cell Immunol ; 364: 104345, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831754

RESUMEN

Previously, we generated IL233, a hybrid cytokine composed of interleukin (IL)-2 and IL-33, with better therapeutic potential than either cytokine in multiple inflammatory diseases, in part through promoting T-regulatory cells (Tregs). Here we test the potential of IL233 pretreatment in a murine model of excessive Th1 activation, the parent-into-F1 model of acute GVHD (aGVHD). Five days of IL233 pretreatment of the recipients blocked or delayed the aGVHD-linked loss of B cells as seen in either the peripheral blood (day-11) or lymph nodes (day-14). IL233 pretreatment also prevented the expansion of donor CD8 T-cells in blood and LN at day-14 and significantly reduced day-14 serum IFNγ and TNFα compared to saline treated GVHD mice although, the level of Tregs did not statistically differ between saline and IL233-treated mice. Overall, the current study provides support for the use of IL233 as a therapeutic option in excessive Th1/CD8-driven conditions.


Asunto(s)
Linfocitos B/inmunología , Trasplante de Médula Ósea , Enfermedad Injerto contra Huésped/inmunología , Interleucina-2/metabolismo , Interleucina-33/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/terapia , Humanos , Interferón gamma/sangre , Interleucina-2/genética , Interleucina-33/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/genética , Trasplante Homólogo , Factor de Necrosis Tumoral alfa/sangre
4.
J Autoimmun ; 102: 133-141, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31103267

RESUMEN

Lupus glomerulonephritis (GN) is an autoimmune disease characterized by immune complex-deposition, complement activation and glomerular inflammation. In lupus-prone NZM2328 mice, the occurrence of lupus GN was accompanied by a decrease in Treg cells and an increase in proinflammatory cytokine-producing T cells. Because IL-33 in addition to IL-2 has been shown to be important for Treg cell proliferation and ST2 (IL-33 receptor) positive Treg cells are more potent in suppressor activity, a hybrid cytokine with active domains of IL-2 and IL-33 was generated to target the ST2+ Treg cells as a therapeutic agent to treat lupus GN. Three mouse models were used: spontaneous and Ad-IFNα- accelerated lupus GN in NZM2328 and the lymphoproliferative autoimmune GN in MRL/lpr mice. Daily injections of IL233 for 5 days prevented Ad-IFNα-induced lupus GN and induced remission of spontaneous lupus GN. The remission was permanent in that no relapses were detected. The remission was accompanied by persistent elevation of Treg cells in the renal lymph nodes. IL233 is more potent than IL-2 and IL-33 either singly or in combination in the treatment of lupus GN. The results of this study support the thesis that IL233 should be considered as a novel agent for treating lupus GN.


Asunto(s)
Interleucina-2/uso terapéutico , Interleucina-33/uso terapéutico , Nefritis Lúpica/tratamiento farmacológico , Proteínas Recombinantes de Fusión/uso terapéutico , Linfocitos T Reguladores/inmunología , Animales , Autoanticuerpos/sangre , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Ganglios Linfáticos/citología , Ratones , Inducción de Remisión/métodos
5.
J Am Soc Nephrol ; 28(9): 2681-2693, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28539382

RESUMEN

CD4+Foxp3+ regulatory T cells (Tregs) protect the kidney during AKI. We previously found that IL-2, which is critical for Treg homeostasis, upregulates the IL-33 receptor (ST2) on CD4+ T cells, thus we hypothesized that IL-2 and IL-33 cooperate to enhance Treg function. We found that a major subset of Tregs in mice express ST2, and coinjection of IL-2 and IL-33 increased the number of Tregs in lymphoid organs and protected mice from ischemia-reperfusion injury (IRI) more efficiently than either cytokine alone. Accordingly, we generated a novel hybrid cytokine (IL233) bearing the activities of IL-2 and IL-33 for efficient targeting to Tregs. IL233 treatment increased the number of Tregs in blood and spleen and prevented IRI more efficiently than a mixture of IL-2 and IL-33. Injection of IL233 also increased the numbers of Tregs in renal compartments. Moreover, IL233-treated mice had fewer splenic Tregs and more Tregs in kidneys after IRI. In vitro, splenic Tregs from IL233-treated mice suppressed CD4+ T cell proliferation better than Tregs from saline-treated controls. IL233 treatment also improved the ability of isolated Tregs to inhibit IRI in adoptive transfer experiments and protected mice from cisplatin- and doxorubicin-induced nephrotoxic injury. Finally, treatment with IL233 increased the proportion of ST2-bearing innate lymphoid cells (ILC2) in blood and kidneys, and adoptive transfer of ILC2 also protected mice from IRI. Thus, the novel IL233 hybrid cytokine, which utilizes the cooperation of IL-2 and IL-33 to enhance Treg- and ILC2-mediated protection from AKI, bears strong therapeutic potential.


Asunto(s)
Lesión Renal Aguda/inmunología , Lesión Renal Aguda/prevención & control , Interleucina-2/farmacología , Interleucina-33/farmacología , Proteínas Recombinantes de Fusión/farmacología , Daño por Reperfusión/inmunología , Daño por Reperfusión/prevención & control , Linfocitos T Reguladores/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Animales , Recuento de Linfocito CD4 , Proliferación Celular , Células Cultivadas , Cisplatino/efectos adversos , Técnicas de Cocultivo , Doxorrubicina/efectos adversos , Proteína 1 Similar al Receptor de Interleucina-1/sangre , Interleucina-2/uso terapéutico , Interleucina-33/uso terapéutico , Riñón/inmunología , Masculino , Ratones , Proteínas Recombinantes de Fusión/uso terapéutico , Bazo/inmunología
6.
J Cell Mol Med ; 20(8): 1571-88, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27097531

RESUMEN

Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft-versus-host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human-induced pluripotent stem cells (hiPSCs) has been shown in recent pre-clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue-derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC-derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human-induced PSC-derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint-free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC-derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render iMSC's effectiveness in translational medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Medicina Regenerativa , Diferenciación Celular , Humanos , Fenotipo
7.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289985

RESUMEN

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Asunto(s)
Hipertensión , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular , Proliferación Celular/fisiología , Conexinas/metabolismo , Peróxido de Hidrógeno/farmacología , Obesidad , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
8.
Curr Stem Cell Res Ther ; 17(3): 226-236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34348631

RESUMEN

The advent of organoids has renewed researchers' interest in in vitro cell culture systems. A wide variety of protocols, primarily utilizing pluripotent stem cells, are under development to improve organoid generation to mimic organ development. The complexity of organoids generated is greatly influenced based on the method used. Understanding the process of kidney organoid formation gives developmental insights into how renal cells form, mature, and interact with the adjacent cells to form specific spatiotemporal structural patterns. This knowledge can bridge the gaps in understanding in vivo renal developmental processes. Evaluating genetic and epigenetic signatures in specialized cell types can help interpret the molecular mechanisms governing cell fate. In addition, development in single-cell RNA sequencing, 3D bioprinting and microfluidic technologies has led to better identification and understanding of a variety of cell types during differentiation and designing of complex structures to mimic the conditions in vivo. While several reviews have highlighted the application of kidney organoids, there is no comprehensive review of various methodologies specifically focusing on kidney organoids. This review summarizes the updated differentiation methodologies, applications, and challenges associated with kidney organoids. Here we have comprehensively collated all the different variables influencing the organoid generation.


Asunto(s)
Organoides , Células Madre Pluripotentes , Diferenciación Celular , Humanos , Riñón
9.
Front Pharmacol ; 12: 806612, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069220

RESUMEN

Lupus glomerulonephritis (LN) is a complex autoimmune disease characterized by circulating autoantibodies, immune-complex deposition, immune dysregulation and defects in regulatory T cell (Tregs). Treatment options rely on general immunosuppressants and steroids that have serious side effects. Approaches to target immune cells, such as B cells in particular, has had limited success and new approaches are being investigated. Defects in Tregs in the setting of autoimmunity is well known and Treg-replacement strategies are currently being explored. The aim of this minireview is to rekindle interest on Treg-targeting strategies. We discuss the existing evidences for Treg-enhancement strategies using key cytokines interleukin (IL)-2, IL-33 and IL-6 that have shown to provide remission in LN. We also discuss strategies for indirect Treg-modulation for protection from LN.

10.
Front Med (Lausanne) ; 7: 441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974364

RESUMEN

Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.

11.
Sci Rep ; 9(1): 3215, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824764

RESUMEN

Kidney injury, whether due to ischemic insults or chemotherapeutic agents, is exacerbated by inflammation, whereas Tregs are protective. We recently showed that IL-2 and IL-33, especially as a hybrid cytokine (IL233 - bearing IL-2 and IL-33 activities in one molecule), potentiated Tregs and group 2 innate lymphoid cells (ILC2) to prevent renal injury. Recent studies have indicated a reparative function for Tregs and ILC2. Here, using doxorubicin-induced nephrotoxic renal injury model, we investigated whether IL233 administration either before, late or very late after renal injury can restore kidney structure and function. We found that IL233 treatment even 2-weeks post-doxorubicin completely restored kidney function accompanied with an increase Treg and ILC2 in lymphoid and renal compartments, augmented anti-inflammatory cytokines and attenuated proinflammatory cytokine levels. IL233 treated mice had reduced inflammation, kidney injury (Score values - saline: 3.34 ± 0.334; IL233 pre: 0.42 ± 0.162; IL233 24 hrs: 1.34 ± 0.43; IL233 1 week: 1.2 ± 0.41; IL233 2 week: 0.47 ± 0.37; IL233 24 hrs + PC61: 3.5 ± 0.74) and fibrosis in all treatment regimen as compared to saline controls. Importantly, mice treated with IL233 displayed a reparative program in the kidneys, as evidenced by increased expression of genes for renal progenitor-cells and nephron segments. Our findings present the first evidence of an immunoregulatory cytokine, IL233, which could be a potent therapeutic strategy that augments Treg and ILC2 to not only inhibit renal injury, but also promote regeneration.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Interleucina-2/farmacología , Interleucina-33/farmacología , Síndrome Nefrótico/fisiopatología , Proteínas Recombinantes de Fusión/farmacología , Regeneración/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Animales , Células Cultivadas , Citocinas/metabolismo , Doxorrubicina , Mediadores de Inflamación/metabolismo , Interleucina-2/administración & dosificación , Interleucina-33/administración & dosificación , Riñón/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Ratones Endogámicos BALB C , Síndrome Nefrótico/inducido químicamente , Proteínas Recombinantes de Fusión/administración & dosificación , Regeneración/fisiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo
12.
Front Pharmacol ; 10: 572, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191312

RESUMEN

Obesity-linked (type 2) diabetic nephropathy (T2DN) has become the largest contributor to morbidity and mortality in the modern world. Recent evidences suggest that inflammation may contribute to the pathogenesis of T2DN and T-regulatory cells (Treg) are protective. We developed a novel cytokine (named IL233) bearing IL-2 and IL-33 activities in a single molecule and demonstrated that IL233 promotes Treg and T-helper (Th) 2 immune responses to protect mice from inflammatory acute kidney injury. Here, we investigated whether through a similar enhancement of Treg and inhibition of inflammation, IL233 protects from T2DN in a genetically obese mouse model, when administered either early or late after the onset of diabetes. In the older mice with obesity and microalbuminuria, IL233 treatment reduced hyperglycemia, plasma glycated proteins, and albuminuria. Interestingly, IL233 administered before the onset of microalbuminuria not only strongly inhibited the progression of T2DN and reversed diabetes as indicated by lowering of blood glucose, normalization of glucose tolerance and insulin levels in islets, but surprisingly, also attenuated weight gain and adipogenicity despite comparable food intake. Histological examination of kidneys showed that saline control mice had severe inflammation, glomerular hypertrophy, and mesangial expansion, which were all attenuated in the IL233 treated mice. The protection correlated with greater accumulation of Tregs, group 2 innate lymphoid cells (ILC2), alternately activated macrophages and eosinophils in the adipose tissue, along with a skewing toward T-helper 2 responses. Thus, the novel IL233 cytokine bears therapeutic potential as it protects genetically obese mice from T2DN by regulating multiple contributors to pathogenesis. Short Description: A novel bifunctional cytokine IL233, bearing IL-2 and IL-33 activities reverses inflammation and protects from type-2 diabetic nephropathy through promoting T-regulatory cells and type 2 immune response.

13.
Methods Mol Biol ; 1553: 91-113, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28229410

RESUMEN

Mesenchymal stromal cells (MSCs) and induced pluripotent stem cells (iPSCs) have stimulated much interest in the scientific community and hopes among the general public since their discovery in 1966 due to a variety of potential applications it has in the field of regenerative medicine. Copious amount of literature, as well as long-term animal and human clinical trials, indicates that MSCs can be successfully used for therapeutic purpose without any extreme adversities. MSCs have been isolated from adult and fetal tissues. Recently, MSCs from placenta have generated much inquisitiveness. In this article, we will demonstrate the step-by-step procedure for isolating human placental MSCs from term placenta, reprogramming of placental MSCs into iPSCs using plasmid vectors, evaluation of functional recovery in mice spinal cord injury models, and in vivo tracking of the transplanted cells.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Placenta/citología , Traumatismos de la Médula Espinal/terapia , Animales , Apoptosis , Biomarcadores , Técnicas de Cultivo de Célula , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Separación Celular , Rastreo Celular/métodos , Transformación Celular Neoplásica , Análisis Citogenético , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratones SCID , Embarazo , Medicina Regenerativa
14.
Methods Mol Biol ; 1553: 115-132, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28229411

RESUMEN

Mesenchymal stem cells (MSCs) are blossoming as a credible source for regenerative medical applications. The use of fetal MSCs is gaining momentum for therapeutic use. The ease of isolation, enhanced characteristics, and immunomodulation properties renders the utilization of fetal MSCs for numerous clinical applications. In this article, we will demonstrate a step-by-step protocol for isolation of Wharton's jelly MSCs (WJMSCs) from the human umbilical cord matrix, preparation of human platelet lysate, fabricating amniotic membrane scaffold and mice model to study skin regeneration using a combination of MSCs and decellularized amniotic membrane scaffold.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Piel/lesiones , Gelatina de Wharton/citología , Cicatrización de Heridas , Animales , Apoptosis , Biomarcadores , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Separación Celular , Rastreo Celular , Transformación Celular Neoplásica , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Ratones SCID , Fenotipo
15.
Curr Stem Cell Res Ther ; 11(2): 99-113, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26521972

RESUMEN

The Human mesenchymal stromal/stem cells (MSCs) have been isolated from various tissue sources. Yet, the lack of a distinctive marker for identifying in vivo MSCs in their tissue niche has hampered the MSC's in vivo behavior tracking and compared that to the in vitro expanded cultures. In this review, we present a comprehensive report on MSCs history, isolation from assorted tissue sources, classification, long-term cultures for comprehensively characterized MSCs, immunomodulation, regenerative medical applications, iMSCs as a novel source of patient-specific iPSCs and scaleup strategies for translational applications. We have emphasized on prenatal tissue-derived MSCs and iMSCs derived from hiPSCs as an effective alternative to adult MSCs. We also highlight the urgent requirement to revisit the initial criteria laid down by International Society for Cellular Therapy (ISCT) and propose more stringent criteria to define, identify and exclusively characterize the MSCs derived from various tissue sources using advanced molecular tools; also more international workshops are necessary for delineating unique features of MSCs. Unless the proposed goal is achieved, it is extremely difficult to realize the full potential of MSCs in translational applications. Although numerous patients have been tested with MSCs to date, no immediate adverse outcomes or infusion-related toxicity has been reported, suggesting MSCs infusion to be safe. However, rare adverse event and late complications of the treatment may be detected in large cohorts of patients with long-term follow-up.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular/genética , Humanos , Medicina de Precisión
16.
Stem Cells Int ; 2015: 132172, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26240569

RESUMEN

The spinal cord injury leads to enervation of normal tissue homeostasis ultimately leading to paralysis. Until now there is no proper cure for the treatment of spinal cord injury. Recently, cell therapy in animal spinal cord injury models has shown some progress of recovery. At present, clinical trials are under progress to evaluate the efficacy of cell transplantation for the treatment of spinal cord injury. Different types of cells such as pluripotent stem cells derived neural cells, mesenchymal stromal cells, neural stem cells, glial cells are being tested in various spinal cord injury models. In this review we highlight both the advances and lacuna in the field of spinal cord injury by discussing epidemiology, pathophysiology, molecular mechanism, and various cell therapy strategies employed in preclinical and clinical injury models and finally we discuss the limitations and ethical issues involved in cell therapy approach for treating spinal cord injury.

17.
Stem Cells Int ; 2015: 606415, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26240573

RESUMEN

Stem cell based therapies hold great promise for the treatment of human diseases; however results from several recent clinical studies have not shown a level of efficacy required for their use as a first-line therapy, because more often in these studies fate of the transplanted cells is unknown. Thus monitoring the real-time fate of in vivo transplanted cells is essential to validate the full potential of stem cells based therapy. Recent studies have shown how real-time in vivo molecular imaging has helped in identifying hurdles towards clinical translation and designing potential strategies that may contribute to successful transplantation of stem cells and improved outcomes. At present, there are no cost effective and efficient labeling techniques for tracking the cells under in vivo conditions. Indocyanine green (ICG) is a safer, economical, and superior labelling technique for in vivo optical imaging. ICG is a FDA-approved agent and decades of usage have clearly established the effectiveness of ICG for human clinical applications. In this study, we have optimized the ICG labelling conditions that is optimal for noninvasive optical imaging and demonstrated that ICG labelled cells can be successfully used for in vivo cell tracking applications in SCID mice injury models.

18.
PLoS One ; 9(4): e93726, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24736473

RESUMEN

Human mesenchymal stem cells (MSCs) are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS) supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL). Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG) at optimal concentration can be resourcefully used for labeling of stem cells and in vivo tracking by near infrared fluorescence non-invasive live cell imaging of labelled transplanted cells, thus proving its utility for therapeutic applications.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración , Piel/lesiones , Cicatrización de Heridas/fisiología , Adulto , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones SCID , Fenotipo , Placenta/citología , Embarazo , Factores de Tiempo , Cordón Umbilical/citología
19.
Stem Cells Int ; 2012: 174328, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22550499

RESUMEN

Mesenchymal stem cells (MSCs) are an alluring therapeutic resource because of their plasticity, immunoregulatory capacity and ease of availability. Human BM-derived MSCs have limited proliferative capability, consequently, it is challenging to use in tissue engineering and regenerative medicine applications. Hence, placental MSCs of maternal origin, which is one of richest sources of MSCs were chosen to establish long-term culture from the cotyledons of full-term human placenta. Flow analysis established bonafied MSCs phenotypic characteristics, staining positively for CD29, CD73, CD90, CD105 and negatively for CD14, CD34, CD45 markers. Pluripotency of the cultured MSCs was assessed by in vitro differentiation towards not only intralineage cells like adipocytes, osteocytes, chondrocytes, and myotubules cells but also translineage differentiated towards pancreatic progenitor cells, neural cells, and retinal cells displaying plasticity. These cells did not significantly alter cell cycle or apoptosis pattern while maintaining the normal karyotype; they also have limited expression of MHC-II antigens and are Naive for stimulatory factors CD80 and CD 86. Further soft agar assays revealed that placental MSCs do not have the ability to form invasive colonies. Taking together all these characteristics into consideration, it indicates that placental MSCs could serve as good candidates for development and progress of stem-cell based therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA