Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201253

RESUMEN

Osteoporosis is a chronic disease that affects millions of patients worldwide and is characterized by low bone mineral density (BMD) and increased risk of fractures. Notably, natural molecules can increase BMD and exert pro-osteogenic effects. Noteworthily, the nutraceutical BlastiMin Complex® (Mivell, Italy, European Patent Application EP4205733A1) can induce differentiation of human bone marrow mesenchymal stem cells (BM-MSCs) in osteoblasts and can exert in vitro pro-osteogenic and anti-inflammatory effects. Thus, the purpose of this study was to verify the effects of BlastiMin Complex® on bone turnover markers (BTMs) and BMD in patients with senile and postmenopausal osteopenia or osteoporosis. The efficacy of BlastiMin Complex® on BTMs in serum was evaluated through biochemical assays. BMD values were analyzed by dual-energy X-ray absorptiometry (DXA) and Radiofrequency Echographic Multi Spectrometry (R.E.M.S.) techniques, and the SNPs with a role in osteoporosis development were evaluated by PCR. Clinical data obtained after 12 months of treatment showed an increase in bone turnover index, a decrease in C-reactive protein levels, and a remarkable increase in P1NP levels, indicating the induction of osteoblast proliferation and activity in the cohort of 100% female patients recruited for the study. These findings show that the nutraceutical BlastiMin Complex® could be used as an adjuvant in combination with synthetic drugs for the treatment of osteoporosis pathology.


Asunto(s)
Densidad Ósea , Enfermedades Óseas Metabólicas , Suplementos Dietéticos , Osteogénesis , Osteoporosis , Humanos , Femenino , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/metabolismo , Densidad Ósea/efectos de los fármacos , Anciano , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Persona de Mediana Edad , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Biomarcadores , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos
2.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240169

RESUMEN

During aging, bone marrow mesenchymal stromal cells (MSCs)-the precursors of osteoblasts-undergo cellular senescence, losing their osteogenic potential and acquiring a pro-inflammatory secretory phenotype. These dysfunctions cause bone loss and lead to osteoporosis. Prevention and intervention at an early stage of bone loss are important, and naturally active compounds could represent a valid help in addition to diet. Here, we tested the hypothesis that the combination of two pro-osteogenic factors, namely orthosilicic acid (OA) and vitamin K2 (VK2), and three other anti-inflammatory compounds, namely curcumin (CUR), polydatin (PD) and quercetin (QCT)-that mirror the nutraceutical BlastiMin Complex® (Mivell, Italy)-would be effective in promoting MSC osteogenesis, even of replicative senescent cells (sMSCs), and inhibiting their pro-inflammatory phenotype in vitro. Results showed that when used at non-cytotoxic doses, (i) the association of OA and VK2 promoted MSC differentiation into osteoblasts, even when cultured without other pro-differentiating factors; and (ii) CUR, PD and QCT exerted an anti-inflammatory effect on sMSCs, and also synergized with OA and VK2 in promoting the expression of the pivotal osteogenic marker ALP in these cells. Overall, these data suggest a potential role of using a combination of all of these natural compounds as a supplement to prevent or control the progression of age-related osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Curcumina , Células Madre Mesenquimatosas , Osteoporosis , Humanos , Osteogénesis , Quercetina/uso terapéutico , Vitamina K 2/farmacología , Vitamina K 2/metabolismo , Curcumina/farmacología , Médula Ósea/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Células Cultivadas , Células de la Médula Ósea
3.
Biomolecules ; 14(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062550

RESUMEN

Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.


Asunto(s)
Antiinflamatorios , Antioxidantes , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Osteoporosis , Polifenoles , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polifenoles/farmacología , Polifenoles/química , Polifenoles/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Animales , Osteogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Enfermedad Crónica
4.
Antioxidants (Basel) ; 12(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37891909

RESUMEN

Osteoporosis is a condition favored by the postmenopausal decline in estrogen levels and worsened by oxidative stress (OS). Polyphenols are natural compounds abundantly found in fruits and vegetables, and they exert antioxidant and hormonal effects that could be useful in osteoporosis prevention, as suggested by epidemiological studies showing a lower incidence of fractures in individuals consuming polyphenol-rich diets. The aim of our meta-analysis is to evaluate the effects of polyphenols on bone mineral density (BMD, primary endpoint) and bone turnover markers (BTMs, secondary endpoint) in postmenopausal women. Twenty-one randomized control trials (RCTs) were included in our analysis after in-depth search on PubMed, EMBASE, and Scopus databases. We found that supplementation with polyphenols for 3-36 months exerted no statically significant effects on BMD measured at lumbar spine (sMD: 0.21, 95% CI [-0.08 to 0.51], p = 0.16), femoral neck (sMD: 0.16, 95% CI [-0.23 to 0.55], p = 0.42), total hip (sMD: 0.05, 95% CI [-0.14 to 0.24], p = 0.61), and whole body (sMD: -0.12, 95% CI [-0.42 to 0.17], p = 0.41). Subgroup analysis based on treatment duration showed no statistical significance, but a significant effect on lumbar BMD emerged when studies with duration of 24 months or greater were analyzed separately. On the other hand, we found a significantly slight increase in bone-specific alkaline phosphatase (BALP) levels (sMD: 1.27, 95% CI [1.13 to 1.42], p < 0.0001) and a decrease in pyridinoline (PD) levels (sMD: -0.58, 95% CI [-0.77 to -0.39], p < 0.0001). High heterogeneity among studies and unclear risk of bias in one third of the included studies emerged. A subgroup analysis showed similar effects for different duration of treatment and models of dual-energy X-ray absorptiometry (DXA) scanner. More robust evidence is needed before recommending the prescription of polyphenols in clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA