Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 61(17): 1723-1734, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35998361

RESUMEN

Human polypyrimidine-binding splicing factor (PSF/SFPQ) is a tumor suppressor protein that regulates the gene expression of several proto-oncogenes and binds to the 5'-polyuridine negative-sense template (5'-PUN) of some RNA viruses. The activity of PSF is negatively regulated by long-noncoding RNAs, human metastasis associated in lung adenocarcinoma transcript-1 and murine virus-like 30S transcript-1 (VL30-1). PSF is a 707-amino acid protein that has a DNA-binding domain and two RNA recognition motifs (RRMs). Although the structure of the apo-truncated PSF is known, how PSF recognizes RNA remains elusive. Here, we report the 2.8 Å and 3.5 Å resolution crystal structures of a biologically active truncated construct of PSF (sPSF, consisting of residues 214-598) alone and in a complex with a 30mer fragment of VL30-1 RNA, respectively. The structure of the complex reveals how the 30mer RNA is recognized at two U-specific induced-fit binding pockets, located at the previously unrecognized domain-swapped, inter-subunit RRM1 (of the first subunit)-RRM2 (of the second subunit) interfaces that do not exist in the apo structure. Thus, the sPSF dimer appears to have two conformations in solution: one in a low-affinity state for RNA binding, as seen in the apo-structure, and the other in a high-affinity state for RNA binding, as seen in the sPSF-RNA complex. PSF undergoes an all or nothing transition between having two or no RNA-binding pockets. We predict that the RNA binds with a high degree of positive cooperativity. These structures provide an insight into a new regulatory mechanism that is likely involved in promoting malignancies and other human diseases.


Asunto(s)
ARN Largo no Codificante , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Factor de Empalme Asociado a PTB/genética , Factor de Empalme Asociado a PTB/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Mol Cell ; 37(6): 879-86, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20347429

RESUMEN

FANCM is a Fanconi anemia nuclear core complex protein required for the functional integrity of the FANC-BRCA pathway of DNA damage response and repair. Here we report the isolation and characterization of two histone-fold-containing FANCM-associated proteins, MHF1 and MHF2. We show that suppression of MHF1 expression results in (1) destabilization of FANCM and MHF2, (2) impairment of DNA damage-induced monoubiquitination and foci formation of FANCD2, (3) defective chromatin localization of FA nuclear core complex proteins, (4) elevated MMC-induced chromosome aberrations, and (5) sensitivity to MMC and camptothecin. We also provide biochemical evidence that MHF1 and MHF2 assemble into a heterodimer that binds DNA and enhances the DNA branch migration activity of FANCM. These findings reveal critical roles of the MHF1-MHF2 dimer in DNA damage repair and genome maintenance through FANCM.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Anemia de Fanconi/metabolismo , Histonas/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Línea Celular Tumoral , ADN/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Anemia de Fanconi/genética , Humanos , Unión Proteica
3.
Nat Commun ; 5: 2987, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24390579

RESUMEN

The conserved MHF1-MHF2 (MHF) complex functions in the activation of the Fanconi anaemia pathway of the DNA damage response, in regulating homologous recombination, and in DNA replication fork maintenance. MHF facilitates the processing of multiple types of branched DNAs by the DNA translocase FANCM. Here we report the crystal structure of a human MHF-DNA complex that reveals the DNA-binding mode of MHF. The structure suggests that MHF prefers branched DNA over double-stranded DNA because it engages two duplex arms. Biochemical analyses verify that MHF preferentially engages DNA forks or various four-way junctions independent of the junction-site structure. Furthermore, genetic experiments provide evidence that the observed DNA-binding interface of MHF is important for cellular resistance to DNA damage. These results offer insights into how the MHF complex recognizes branched DNA and stimulates FANCM activity at such a structure to promote genome maintenance.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Daño del ADN/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Cristalografía por Rayos X , ADN Helicasas/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína
4.
J Biol Chem ; 282(13): 10018-10027, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17264079

RESUMEN

CXCL12 (SDF-1alpha) and CXCR4 are critical for embryonic development and cellular migration in adults. These proteins are involved in HIV-1 infection, cancer metastasis, and WHIM disease. Sequestration and presentation of CXCL12 to CXCR4 by glycosaminoglycans (GAGs) is proposed to be important for receptor activation. Mutagenesis has identified CXCL12 residues that bind to heparin. However, the molecular details of this interaction have not yet been determined. Here we demonstrate that soluble heparin and heparan sulfate negatively affect CXCL12-mediated in vitro chemotaxis. We also show that a cluster of basic residues in the dimer interface is required for chemotaxis and is a target for inhibition by heparin. We present structural evidence for binding of an unsaturated heparin disaccharide to CXCL12 attained through solution NMR spectroscopy and x-ray crystallography. Increasing concentrations of the disaccharide altered the two-dimensional (1)H-(15)N-HSQC spectra of CXCL12, which identified two clusters of residues. One cluster corresponds to beta-strands in the dimer interface. The second includes the amino-terminal loop and the alpha-helix. In the x-ray structure two unsaturated disaccharides are present. One is in the dimer interface with direct contacts between residues His(25), Lys(27), and Arg(41) of CXCL12 and the heparin disaccharide. The second disaccharide contacts Ala(20), Arg(21), Asn(30), and Lys(64). This is the first x-ray structure of a CXC class chemokine in complex with glycosaminoglycans. Based on the observation of two heparin binding sites, we propose a mechanism in which GAGs bind around CXCL12 dimers as they sequester and present CXCL12 to CXCR4.


Asunto(s)
Quimiocinas CXC/química , Quimiocinas CXC/fisiología , Heparina/química , Heparina/fisiología , Línea Celular Tumoral , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Quimiotaxis , Cristalografía por Rayos X , Dimerización , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Humanos , Unión Proteica/fisiología , Receptores CXCR4/metabolismo
5.
Biochemistry ; 41(22): 7100-7, 2002 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-12033944

RESUMEN

The CXC subfamily of chemokines plays an important role in diverse processes, including inflammation, wound healing, growth regulation, angiogenesis, and tumorigenesis. The CXC chemokine CXCL1, or MGSA/GROalpha, is traditionally considered to be responsible for attracting leukocytes into sites of inflammation. To better understand the molecular mechanisms by which CXCL1 induces CXCR2-mediated chemotaxis, the signal transduction components involved in CXCL1-induced chemotaxis were examined. It is shown here that CXCL1 induces cdc42 and PAK1 activation in CXCR2-expressing HEK293 cells. Activation of the cdc42-PAK1 cascade is required for CXCL1-induced chemotaxis but not for CXCL1-induced intracellular Ca2+ mobilization. Moreover, CXCL1 activation of PAK1 is independent of ERK1/2 activation, a conclusion based on the observations that the inhibition of MEK-ERK activation by expression of dominant negative ERK or by the MEK inhibitor, PD98059, has no effect on CXCL1-induced PAK1 activation or CXCL1-induced chemotaxis.


Asunto(s)
Quimiocinas CXC , Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Sustancias de Crecimiento/farmacología , Péptidos y Proteínas de Señalización Intercelular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Quimiocina CXCL1 , Quimiotaxis/fisiología , Activación Enzimática/efectos de los fármacos , Humanos , MAP Quinasa Quinasa 1 , MAP Quinasa Quinasa 2 , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células Tumorales Cultivadas , Quinasas p21 Activadas
6.
J Biol Chem ; 278(2): 896-907, 2003 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-12417595

RESUMEN

The chemokine receptor CXCR4 is a co-receptor for T-tropic strains of HIV-1. A number of small molecule antagonists of CXCR4 are in development but all are likely to lead to adverse effects due to the physiological function of CXCR4. To prevent these complications, allosteric agonists may be therapeutically useful as adjuvant therapy in combination with small molecule antagonists. A synthetic cDNA library coding for 160,000 different SDF-based peptides was screened for CXCR4 agonist activity in a yeast strain expressing a functional receptor. Peptides that activated CXCR4 in an autocrine manner induced colony formation. Two peptides, designated RSVM and ASLW, were identified as novel agonists that are insensitive to the CXCR4 antagonist AMD3100. In chemotaxis assays using the acute lymphoblastic leukemia cell line CCRF-CEM, RSVM behaves as a partial agonist and ASLW as a superagonist. The superagonist activity of ASLW may be related to its inability to induce receptor internalization. In CCRF-CEM cells, the two peptides are also not inhibited by another CXCR4 antagonist, T140, or the neutralizing monoclonal antibodies 12G5 and 44717.111. These results suggest that alternative agonist-binding sites are present on CXCR4 that could be screened to develop molecules for therapeutic use.


Asunto(s)
Receptores CXCR4/agonistas , Animales , Fármacos Anti-VIH/farmacología , Bencilaminas , Sitios de Unión , Quimiotaxis , Ciclamas , Citometría de Flujo , Biblioteca de Genes , Compuestos Heterocíclicos/farmacología , Humanos , Ratones , Mutación , Oligopéptidos/farmacología , Ratas , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/fisiología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA