Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(21): 34843-34854, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859231

RESUMEN

Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of photonic reservoir computing over other neuromorphic paradigms is its straightforward readout system, which facilitates both rapid training and robust, fabrication variation-insensitive photonic integrated hardware implementation for real-time processing. We present our recent development of a fully-optical, coherent photonic reservoir chip integrated with an optical readout system, capitalizing on these benefits. Alongside the integrated system, we also demonstrate a weight update strategy that is suitable for the integrated optical readout hardware. Using this online training scheme, we successfully solved 3-bit header recognition and delayed XOR tasks at 20 Gbps in real-time, all within the optical domain without excess delays.

2.
Opt Express ; 30(9): 15634-15647, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473279

RESUMEN

Existing work on coherent photonic reservoir computing (PRC) mostly concentrates on single-wavelength solutions. In this paper, we discuss the opportunities and challenges related to exploiting the wavelength dimension in integrated photonic reservoir computing systems. Different strategies are presented to be able to process several wavelengths in parallel using the same readout. Additionally, we present multiwavelength training techniques that allow to increase the stable operating wavelength range by at least a factor of two. It is shown that a single-readout photonic reservoir system can perform with ≈0% BER on several WDM channels in parallel for bit-level tasks and nonlinear signal equalization. This even when taking manufacturing deviations and laser wavelength drift into account.

3.
Opt Express ; 29(20): 30991-30997, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615201

RESUMEN

Nonlinearity mitigation in optical fiber networks is typically handled by electronic Digital Signal Processing (DSP) chips. Such DSP chips are costly, power-hungry and can introduce high latencies. Therefore, optical techniques are investigated which are more efficient in both power consumption and processing cost. One such a machine learning technique is optical reservoir computing, in which a photonic chip can be trained on certain tasks, with the potential advantages of higher speed, reduced power consumption and lower latency compared to its electronic counterparts. In this paper, experimental results are presented where nonlinear distortions in a 32 GBPS OOK signal are mitigated to below the 0.2 × 10-3 FEC limit using a photonic reservoir. Furthermore, the results of the reservoir chip are compared to a tapped delay line filter to clearly show that the system performs nonlinear equalisation.

4.
Sci Rep ; 13(1): 21399, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049625

RESUMEN

Photonics-based computing approaches in combination with wavelength division multiplexing offer a potential solution to modern data and bandwidth needs. This paper experimentally takes an important step towards wavelength division multiplexing in an integrated waveguide-based photonic reservoir computing platform by using a single set of readout weights for up to at least 3 ITU-T channels to efficiently scale the data bandwidth when processing a nonlinear signal equalization task on a 28 Gbps modulated on-off keying signal. Using multiple-wavelength training, we obtain bit error rates well below that of the [Formula: see text] forward error correction limit at high fiber input powers of 18 dBm, which result in high nonlinear distortion. The results of the reservoir chip are compared to a tapped delay line filter and clearly show that the system performs nonlinear equalization. This was achieved using only limited post processing which in future work can be implemented in optical hardware as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA