Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biomech Eng ; 146(11)2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38980683

RESUMEN

This study was undertaken to develop a mathematical model of the long-term in vivo remodeling processes in postimplanted pulmonary artery (PA) conduits. Experimental results from two extant ovine in vivo studies, wherein polyglycolic-acid (PGA)/poly-L-lactic acid tubular conduits were constructed, cell seeded, incubated for 4 weeks, and then implanted in mature sheep to obtain the remodeling data for up to two years. Explanted conduit analysis included detailed novel structural and mechanical studies. Results in both studies indicated that the in vivo conduits remained dimensionally stable up to 80 weeks, so that the conduits maintained a constant in vivo stress and deformation state. In contrast, continued remodeling of the constituent collagen fiber network as evidenced by an increase in effective tissue uniaxial tangent modulus, which then stabilized by one year postimplant. A mesostructural constitute model was then applied to extant planar biaxial mechanical data and revealed several interesting features, including an initial pronounced increase in effective collagen fiber modulus, paralleled by a simultaneous shift toward longer, more uniformly length-distributed collagen fibers. Thus, while the conduit remained dimensionally stable, its internal collagen fibrous structure and resultant mechanical behaviors underwent continued remodeling that stabilized by one year. A time-evolving structural mixture-based mathematical model specialized for this unique form of tissue remodeling was developed, with a focus on time-evolving collagen fiber stiffness as the driver for tissue-level remodeling. The remodeling model was able to fully reproduce (1) the observed tissue-level increases in stiffness by time-evolving simultaneous increases in collagen fiber modulus and lengths, (2) maintenance of the constant collagen fiber angular dispersion, and (3) stabilization of the remodeling processes at one year. Collagen fiber remodeling geometry was directly verified experimentally by histological analysis of the time-evolving collagen fiber crimp, which matches model predictions very closely. Interestingly, the remodeling model indicated that the basis for tissue homeostasis was maintenance of the collagen fiber ensemble stress for all orientations, and not individual collagen fiber stresses. Unlike other growth and remodeling models that traditionally treat changes in the external boundary conditions (e.g., changes in blood pressure) as the primary input stimuli, the driver herein is changes to the internal constituent collagen fiber themselves due to cellular mediated cross-linking.


Asunto(s)
Colágeno , Arteria Pulmonar , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Animales , Colágeno/metabolismo , Colágeno/química , Ovinos , Ingeniería de Tejidos , Modelos Biológicos , Ácido Poliglicólico/química , Prótesis Vascular , Andamios del Tejido/química
2.
J Biomech Eng ; 146(10)2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652602

RESUMEN

Ischemic mitral regurgitation (IMR) occurs from incomplete coaptation of the mitral valve (MV) after myocardial infarction (MI), typically worsened by continued remodeling of the left ventricular (LV). The importance of LV remodeling is clear as IMR is induced by the post-MI dual mechanisms of mitral annular dilation and leaflet tethering from papillary muscle (PM) distension via the MV chordae tendineae (MVCT). However, the detailed etiology of IMR remains poorly understood, in large part due to the complex interactions of the MV and the post-MI LV remodeling processes. Given the patient-specific anatomical complexities of the IMR disease processes, simulation-based approaches represent an ideal approach to improve our understanding of this deadly disease. However, development of patient-specific models of left ventricle-mitral valve (LV-MV) interactions in IMR are complicated by the substantial variability and complexity of the MR etiology itself, making it difficult to extract underlying mechanisms from clinical data alone. To address these shortcomings, we developed a detailed ovine LV-MV finite element (FE) model based on extant comprehensive ovine experimental data. First, an extant ovine LV FE model (Sci. Rep. 2021 Jun 29;11(1):13466) was extended to incorporate the MV using a high fidelity ovine in vivo derived MV leaflet geometry. As it is not currently possible to image the MVCT in vivo, a functionally equivalent MVCT network was developed to create the final LV-MV model. Interestingly, in pilot studies, the MV leaflet strains did not agree well with known in vivo MV leaflet strain fields. We then incorporated previously reported MV leaflet prestrains (J. Biomech. Eng. 2023 Nov 1;145(11):111002) in the simulations. The resulting LV-MV model produced excellent agreement with the known in vivo ovine MV leaflet strains and deformed shapes in the normal state. We then simulated the effects of regional acute infarctions of varying sizes and anatomical locations by shutting down the local myocardial contractility. The remaining healthy (noninfarcted) myocardium mechanical behaviors were maintained, but allowed to adjust their active contractile patterns to maintain the prescribed pressure-volume loop behaviors in the acute post-MI state. For all cases studied, the LV-MV simulation demonstrated excellent agreement with known LV and MV in vivo strains and MV regurgitation orifice areas. Infarct location was shown to play a critical role in resultant MV leaflet strain fields. Specifically, extensional deformations of the posterior leaflets occurred in the posterobasal and laterobasal infarcts, while compressive deformations of the anterior leaflet were observed in the anterobasal infarct. Moreover, the simulated posterobasal infarct induced the largest MV regurgitation orifice area, consistent with experimental observations. The present study is the first detailed LV-MV simulation that reveals the important role of MV leaflet prestrain and functionally equivalent MVCT for accurate predictions of LV-MV interactions. Importantly, the current study further underscored simulation-based methods in understanding MV function as an integral part of the LV.


Asunto(s)
Modelos Animales de Enfermedad , Análisis de Elementos Finitos , Ventrículos Cardíacos , Insuficiencia de la Válvula Mitral , Infarto del Miocardio , Animales , Insuficiencia de la Válvula Mitral/fisiopatología , Ovinos , Infarto del Miocardio/fisiopatología , Ventrículos Cardíacos/fisiopatología , Válvula Mitral/fisiopatología , Válvula Mitral/patología , Simulación por Computador , Fenómenos Biomecánicos
3.
Ann Biomed Eng ; 52(9): 2596-2609, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38874705

RESUMEN

Aortic valve (AV) disease is a common valvular lesion in the United States, present in about 5% of the population at age 65 with increasing prevalence with advancing age. While current replacement heart valves have extended life for many, their long-term use remains hampered by limited durability. Non-surgical treatments for AV disease do not yet exist, in large part because our understanding of AV disease etiology remains incomplete. The direct study of human AV disease remains hampered by the fact that clinical data is only available at the time of treatment, where the disease is at or near end stage and any time progression information has been lost. Large animal models, long used to assess replacement AV devices, cannot yet reproduce AV disease processes. As an important alternative mouse animal models are attractive for their ability to perform genetic studies of the AV disease processes and test potential pharmaceutical treatments. While mouse models have been used for cellular and genetic studies of AV disease, their small size and fast heart rates have hindered their use for tissue- and organ-level studies. We have recently developed a novel ex vivo micro-CT-based methodology to 3D reconstruct murine heart valves and estimate the leaflet mechanical behaviors (Feng et al. in Sci Rep 13(1):12852, 2023). In the present study, we extended our approach to 3D reconstruction of the in vivo functional murine AV (mAV) geometry using high-frequency four-dimensional ultrasound (4DUS). From the resulting 4DUS images we digitized the mAV mid-surface coordinates in the fully closed and fully opened states. We then utilized matched high-resolution µCT images of ex vivo mouse mAV to develop mAV NURBS-based geometric model. We then fitted the mAV geometric model to the in vivo data to reconstruct the 3D in vivo mAV geometry in the closed and open states in n = 3 mAV. Results demonstrated high fidelity geometric results. To our knowledge, this is the first time such reconstruction was ever achieved. This robust assessment of in vivo mAV leaflet kinematics in 3D opens up the possibility for longitudinal characterization of murine models that develop aortic valve disease.


Asunto(s)
Válvula Aórtica , Animales , Ratones , Válvula Aórtica/diagnóstico por imagen , Imagenología Tridimensional , Ratones Endogámicos C57BL , Masculino , Modelos Cardiovasculares
4.
Nat Comput Sci ; 1(5): 313-320, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-38217216

RESUMEN

Mathematical modeling and simulation are moving from being powerful development and analysis tools towards having increased roles in operational monitoring, control and decision support, in which models of specific entities are continually updated in the form of a digital twin. However, current digital twins are largely the result of bespoke technical solutions that are difficult to scale. We discuss two exemplar applications that motivate challenges and opportunities for scaling digital twins, and that underscore potential barriers to wider adoption of this technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA