RESUMEN
Localized stimulation of angiogenesis is an attractive strategy to improve the repair of ischemic or injured tissues. Several microRNAs (miRNAs) such as miRNA-92a (miR-92a) have been reported to negatively regulate angiogenesis in ischemic disease. To exploit the clinical potential of miR-92a inhibitors, safe and efficient delivery needs to be established. Here, we used deoxycholic acid-modified polyethylenimine polymeric conjugates (PEI-DA) to deliver a locked nucleic acid (LNA)-based miR-92a inhibitor (LNA-92a) in vitro and in vivo. The positively charged PEI-DA conjugates condense the negatively charged inhibitors into nano-sized polyplexes (135 ± 7.2 nm) with a positive net charge (34.2 ± 10.6 mV). Similar to the 25 kDa-branched PEI (bPEI25) and Lipofectamine RNAiMAX, human umbilical vein endothelial cells (HUVECs) significantly internalized PEI-DA/LNA-92a polyplexes without any obvious cytotoxicity. Down-regulation of miR-92a following the polyplex-mediated delivery of LNA-92a led to a substantial increase in the integrin subunit alpha 5 (ITGA5), the sirtuin-1 (SIRT1) and Krüppel-like factors (KLF) KLF2/4 expression, formation of capillary-like structures by HUVECs, and migration rate of HUVECs in vitro. Furthermore, PEI-DA/LNA-92a resulted in significantly enhanced capillary density in a chicken chorioallantoic membrane (CAM) model. Localized angiogenesis was substantially induced in the subcutaneous tissues of mice by sustained release of PEI-DA/LNA-92a polyplexes from an in situ forming, biodegradable hydrogel based on clickable poly(ethylene glycol) (PEG) macromers. Our results indicate that PEI-DA conjugates efficiently deliver LNA-92a to improve angiogenesis. Localized delivery of RNA interference (RNAi)-based therapeutics via hydrogel-laden PEI-DA polyplex nanoparticles appears to be a safe and effective approach for different therapeutic targets.
Asunto(s)
Sistemas de Liberación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hidrogeles/farmacología , MicroARNs/antagonistas & inhibidores , Nanopartículas/uso terapéutico , Neovascularización Fisiológica/efectos de los fármacos , Animales , Embrión de Pollo , Femenino , Humanos , Hidrogeles/química , Ratones , MicroARNs/metabolismo , Nanopartículas/químicaRESUMEN
Magnetic molecularly imprinted polymers have been synthesized for the selective preconcentration and trace determination of lamotrigine (LTG) in urine and plasma samples. The magnetic nanoparticles were modified by tetraethyl orthosilicate and 3-methacryloxypropyl trimethoxysilane before imprinting. The magnetic molecularly imprinted polymers were prepared via surface molecular imprinting technique, using Fe3 O4 as a magnetic component, LTG as template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and 2,2'-azobisisobutyronitrile as a radical initiator in methanol/acetonitrile (50:50, v/v) as the porogen. The obtained sorbent was characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermal analysis. Separation of the sorbent from the sample solution was simply achieved by applying an external magnetic field. Determination of the extracted drug was performed by high-performance liquid chromatography with UV detection. Under the optimum extraction conditions, the method detection limits were 0.7 µg/L (based on S/N of 3) for urine samples and 0.5 µg/L for plasma samples. A linear dynamic range of 1-1000 µg/L was obtained for LTF in plasma and urine samples. Finally, the applicability of the proposed method was evaluated by extraction and determination of LTG in urine and plasma samples.
Asunto(s)
Anticonvulsivantes/aislamiento & purificación , Polímeros/química , Extracción en Fase Sólida/métodos , Triazinas/aislamiento & purificación , Anticonvulsivantes/sangre , Anticonvulsivantes/orina , Humanos , Lamotrigina , Impresión Molecular , Polímeros/síntesis química , Extracción en Fase Sólida/instrumentación , Triazinas/sangre , Triazinas/orinaRESUMEN
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Asunto(s)
Terapia Genética , Inmunoterapia Adoptiva , Inmunoterapia Adoptiva/métodos , Técnicas de Transferencia de Gen , Inmunoterapia/métodos , Ingeniería CelularRESUMEN
Reactive oxygen species (ROS) play essential roles in cellular functions, but maintaining ROS balance is crucial for effective therapeutic interventions, especially during cell therapy. In this study, we synthesized an injectable gelatin-based hydrogel, in which polydopamine nanoparticles were entrapped using supramolecular interactions. The surfaces of the nanoparticles were modified using adamantane, enabling their interactions with ß-cyclodextrin-conjugated with gelatin. We evaluated the cytotoxicity and antioxidant properties of the hydrogel on neonatal rat cardiomyocytes (NRCM), where it demonstrated the ability to increase the metabolic activity of NRCMs exposed to hydrogen peroxide (H2O2) after 5 days. Hydrogel-entrapped nanoparticle exhibited a high scavenging capability against hydroxyl radical, 1'-diphenyl-2-picrylhydrazyl radicals, and H2O2, surpassing the effectiveness of ascorbic acid solution. Notably, the presence of polydopamine nanoparticles within the hydrogel promoted the proliferation activity of NRCMs, even in the absence of excessive ROS due to H2O2 treatment. Additionally, when the hydrogel with nanoparticles was injected into an air pouch model, it reduced inflammation and infiltration of immune cells. Notably, the levels of anti-inflammatory factors, IL-10 and IL-4, were significantly increased, while the pro-inflammatory factor TNF-α was suppressed. Therefore, this novel ROS-scavenging hydrogel holds promise for both efficient cell delivery into inflamed tissue and promoting tissue repair.
Asunto(s)
Hidrogeles , Indoles , Nanopartículas , Polímeros , Ratas , Animales , Hidrogeles/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Gelatina/farmacología , Miocitos Cardíacos/metabolismo , Peróxido de Hidrógeno/farmacología , Proliferación CelularRESUMEN
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
RESUMEN
Extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have been widely reported as promising cell-free products that show therapeutic effects of the parental cells but not their limitations. Due to the intrinsic liver tropism of MSC-EVs, they have been widely used as therapeutics or drug carriers for treatment of liver diseases. However, rapid clearance from the target site may attenuate the efficiency of systemically administered MSC-EVs. Herein, sustained release into the peritoneum has been proposed as a new strategy to prolong the bioavailability of the MSC-EVs in the target liver. During intraperitoneal injection, clickable polyethylene glycol (PEG) macromeres were mixed with MSC-EVs to form EV-encapsulated PEG hydrogels via a fast, biocompatible click reaction. Upon biodegradation, the EV-laden hydrogels were swollen gradually to release EVs in a sustained manner over 1 month. In vivo tracking of the labeled EVs revealed that the accumulation of EVs in the liver was extended by hydrogel-mediated delivery for 1 month. Four weeks after injection in a rat model of chronic liver fibrosis, the physical and histopathological investigations of the harvested liver showed superior antifibrosis, anti-apoptosis, and regenerative effects of the EVs when delivered by the sustained systemic release (Gel-EV) to the conventional bolus injection (Free-EV). Specifically, the Gel-EV system improved the antifibrosis, anti-inflammation, anti-apoptosis, and regenerative effects of the EVs to nearly 40, 50, 40, and 50% compared to Free-EV, respectively, as was specified by quantification of the fibrotic area, α-SMA density, and caspase-3 density in the harvested tissues and ALT enzyme in serum. This study may potentiate the use of MSC-EVs as cell-free therapeutics for chronic liver failure. The sustained systemic delivery strategy may open a new paradigm to extend the effects of disease-targeting EVs over time.
Asunto(s)
Vesículas Extracelulares/trasplante , Regeneración Hepática , Células Madre Mesenquimatosas/metabolismo , Animales , Modelos Animales de Enfermedad , Enfermedad Hepática en Estado Terminal , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratas , Ratas WistarRESUMEN
Although transplantation of pancreatic islets is a promising approach for treatment of type 1 diabetes mellitus, the engraftment efficiency of these islets is limited by host immune responses. Extensive efforts have been made to immunoisolate these islets by introducing barriers on the islet surface. To date, these barriers have not successfully protected islets from attack by the immune system. In addition, the inevitable permeability of an islet capsule cannot prevent filtration by proinflammatory cytokines and islet self-antigens. Thus, we have developed a surface engineering approach for localized immonumodulation of the islet microenvironment. Jagged-1 (JAG-1), as a potent immunomodulatory factor, was immobilized on the islet surface by mediation of a double-layer of heterobifunctional poly (ethylene glycol) (PEG). Immobilization and functionality of JAG-1 on PEGylated islet surfaces were established. When co-cultured with splenocytes, the JAG-1 conjugated islets induced a significant increase in regulatory T cells and regulated the cytokine levels produced by immune cells. The results demonstrated that JAG-1 immobilization could improve immunoprotection of pancreatic islets by localized modulation of the immune milieu from an inflammatory to an anti-inflammatory state. We also evaluated the effects of surface modification of these islets by JAG-1 in a xenotransplantation model. The transplanted JAG-1/PEG/islets group showed a significantly reduced blood glucose levels compared with the control group of diabetic mice during the acute phase of the immune response to the transplanted islets. Our results demonstrated that surface modification has the potential to shift the immune system from an inflammatory to anti-inflammatory milieu and may offer a new prospective for immunoprotection of pancreatic islets.
Asunto(s)
Diabetes Mellitus Experimental/terapia , Proteínas Inmovilizadas/inmunología , Factores Inmunológicos/inmunología , Trasplante de Islotes Pancreáticos/inmunología , Islotes Pancreáticos/inmunología , Proteína Jagged-1/inmunología , Animales , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Células HEK293 , Humanos , Tolerancia Inmunológica , Trasplante de Islotes Pancreáticos/métodos , Masculino , Ratones , RatasRESUMEN
Properties of a new polymer gel with cross-linked polyvinyl alcohol as a gelatinous matrix were investigated. The new polymer gel dosimeter was named PVABAT. The irradiation was performed using a calibrated 60Co beam. The dose responses of the PVABAT formulations were quantified with MRI transverse relaxation rate (R2) measurements. The results show that the PVABAT gel responds linearly to the absorbed dose for doses from 30 up to 45 Gy. The maximal amount of [Formula: see text] of PVABAT polymer gel dosimeter was about 0.19 Gy which was indicated on a better resolution in comparison with previously reported acrylamide-based polymer gel dosimeters formulations. Furthermore, the gel response remains stable in the investigated time (192 h) after the irradiation. The effective atomic number and electron density of the new gel showed a maximum difference of 3.2 and 2% with soft tissue respectively. The melting point also increased significantly for new formulation. Furthermore, the new gel formulation has an elemental tissue equivalency for dosimetry applications involving nuclear reactions.
Asunto(s)
Geles/química , Glutaral/química , Alcohol Polivinílico/química , Dosímetros de Radiación , Relación Dosis-Respuesta en la Radiación , Factores de Tiempo , Agua/químicaRESUMEN
A molecular-imprinted polymer nanoparticles (MIP-NP) for the selective preconcentration of 2,4-dichlorophenoxyacetic acid (2,4-D) is described. It was obtained by precipitation polymerization from methacrylic acid (the functional monomer), ethylene glycol dimethacrylate (the cross-linker), 2,2'-azobisisobutyronitrile (the initiator) and 2,4-D (the template molecule) in acetonitrile solution. The MIP-NPs were characterized by thermogravimetric analysis, and by scanning electron microscopy. Imprinted 2,4-D molecules were removed from the polymeric structure using acetic acid in methanol (15:85 v/v %) as the eluting solvent. The sorption and desorption process occur within 10 min and 15 min, respectively. The maximum sorbent capacity of the molecular imprinted polymer is 89.2 mg g(-1). The relative standard deviation and limit of detection for water samples by introduced selective solid phase extraction were 4.2% and 1.25 µg L(-1), and these data for urine samples were 4.7% and 1.80 µg L(-1), respectively. The method was applied to the determination of 2,4-D in the urine and different water samples.