Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Headache Pain ; 21(1): 86, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631251

RESUMEN

BACKGROUND: Migraine is a common headache disorder, with cortical spreading depolarization (CSD) considered as the underlying electrophysiological event. CSD is a slowly propagating wave of neuronal and glial depolarization. Sleep disorders are well known risk factors for migraine chronification, and changes in wake-sleep pattern such as sleep deprivation are common migraine triggers. The underlying mechanisms are unknown. As a step towards developing an animal model to study this, we test whether sleep deprivation, a modifiable migraine trigger, enhances CSD susceptibility in rodent models. METHODS: Acute sleep deprivation was achieved using the "gentle handling method", chosen to minimize stress and avoid confounding bias. Sleep deprivation was started with onset of light (diurnal lighting conditions), and assessment of CSD was performed at the end of a 6 h or 12 h sleep deprivation period. The effect of chronic sleep deprivation on CSD was assessed 6 weeks or 12 weeks after lesioning of the hypothalamic ventrolateral preoptic nucleus. All experiments were done in a blinded fashion with respect to sleep status. During 60 min of continuous topical KCl application, we assessed the total number of CSDs, the direct current shift amplitude and duration of the first CSD, the average and cumulative duration of all CSDs, propagation speed, and electrical CSD threshold. RESULTS: Acute sleep deprivation of 6 h (n = 17) or 12 h (n = 11) duration significantly increased CSD frequency compared to controls (17 ± 4 and 18 ± 2, respectively, vs. 14 ± 2 CSDs/hour in controls; p = 0.003 for both), whereas other electrophysiological properties of CSD were unchanged. Acute total sleep deprivation over 12 h but not over 6 h reduced the electrical threshold of CSD compared to controls (p = 0.037 and p = 0.095, respectively). Chronic partial sleep deprivation in contrast did not affect CSD susceptibility in rats. CONCLUSIONS: Acute but not chronic sleep deprivation enhances CSD susceptibility in rodents, possibly underlying its negative impact as a migraine trigger and exacerbating factor. Our findings underscore the importance of CSD as a therapeutic target in migraine and suggest that headache management should identify and treat associated sleep disorders.


Asunto(s)
Migraña sin Aura/fisiopatología , Privación de Sueño/fisiopatología , Animales , Depresión de Propagación Cortical/fisiología , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
2.
Pain ; 161(7): 1661-1669, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142015

RESUMEN

Experimental and clinical data strongly support vagus nerve stimulation (VNS) as a novel treatment in migraine. Vagus nerve stimulation acutely suppresses cortical spreading depression (CSD) susceptibility, an experimental model that has been used to screen for migraine therapies. However, mechanisms underlying VNS efficacy on CSD are unknown. Here, we interrogated the central and peripheral mechanisms using VNS delivered either invasively (iVNS) or noninvasively (nVNS) in male Sprague-Dawley rats. Cortical spreading depression susceptibility was evaluated 40 minutes after the stimulation. iVNS elevated the electrical CSD threshold more than 2-fold and decreased KCl-induced CSD frequency by 22% when delivered to intact vagus nerve. Distal vagotomy did not alter iVNS efficacy (2-fold higher threshold and 19% lower frequency in iVNS vs sham). By contrast, proximal vagotomy completely abolished iVNS effect on CSD. Pharmacological blockade of nucleus tractus solitarius, the main relay for vagal afferents, by lidocaine or glutamate receptor antagonist CNQX also prevented CSD suppression by nVNS. Supporting a role for both norepinephrine and serotonin, CSD suppression by nVNS was inhibited by more than 50% after abrogating norepinephrinergic or serotonergic neurotransmission alone using specific neurotoxins; abrogating both completely blocked the nVNS effect. Our results suggest that VNS inhibits CSD through central afferents relaying in nucleus tractus solitarius and projecting to subcortical neuromodulatory centers providing serotonergic and norepinephrinergic innervation to the cortex.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Estimulación del Nervio Vago , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Nervio Vago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA